
Vrije Universiteit Amsterdam Universiteit van Amsterdam

Master Thesis

Erroneous Kubernetes Object Generation
using Structure-aware Fuzzing

Author: Prashanth Varma Dommaraju(2688076)

1st supervisor: Prof. dr. ir. Alexandru Iosup
daily supervisor: Ir. Sacheendra Talluri
2nd reader: Dr. Tiziano De Matteis

A thesis submitted in fulfillment of the requirements for
the joint UvA-VU Master of Science degree in Computer Science

October 1, 2024

“Problems that remain persistently insoluble should always be suspected as questions asked
in the wrong way.” — ,

from The Book: On the Taboo Against Knowing Who You Are, by Alan Wilson Watts

ii

Abstract

Kubernetes is evolving rapidly. Private and public vendors increasingly rely

on custom Kubernetes configurations to support the demand for containerized

applications and global distributed systems. Such custom configurations need

resilience and reliability. Any misconfiguration can disrupt crucial production

workloads. Kubernetes has lower test coverage, thus making it difficult for de-

velopers to debug issues or errors. Kubernetes needs faster error localization in

the vast code base. Kubernetes’ complexity challenges users to debug erroneous

configurations and identify issues stemming from software bugs.

We propose an erroneous object generator using the structure-aware fuzzer.

We design and implement the structure-aware fuzzer to generate these real-

world error configurations and evaluate if Kubernetes can handle such erroneous

objects and create the errors. Our experiments demonstrate that the tool can

create erroneous objects, and the structure-aware fuzzer can explore more code

paths than the String-based input fuzzer. Creating such error objects will

help vendors or developers to localize and fix the errors created by these error

objects.

Acknowledgements

I want to thank Sacheendra Talluri for guiding and supervising me through

such a fantastic project and introducing me to fuzzing and Kubernetes. I also

extend my gratitude to my First reader, Prof. Dr. Ir. Alexandru Iosup, and

second reader, Prof. Dr. Tiziano De Matteis. I wouldn’t have been able to

complete this project without the support of family and friends throughout the

project, during stressful situations, and during illness. This project pushed me

hard to make me understand new perspectives and throw puzzling, challenging

scenarios. Grateful for everyone who supported me through this project.

Contents

List of Figures iv

List of Tables v

1 Introduction 1

1.1 Context . 2

1.2 Problem Statement . 3

1.3 Research Questions . 4

1.4 Challenges . 5

1.5 Societal Relevance . 6

1.6 Plagiarism Declaration . 6

1.7 Thesis Outline . 6

2 Background 7

2.1 Kubelet, Kubernetes-API-server, and ETCD 8

2.2 Protobuf in Kubernetes . 8

2.3 Structure Aware Fuzzing . 11

3 Design of Kubernetes Erroneous Object Generation 16

3.1 Requirement Analysis . 16

3.2 Requirements . 20

3.3 High-Level Design . 22

3.4 Components of the Erroneous Object Generation Flow 23

3.5 Summary . 29

4 Implementation of Structure Aware Fuzzer with Kubernetes 30

4.1 Implementation of Structure-Aware Fuzzer 30

4.2 Implementation of Unmarshaler . 32

4.3 Error Handling and Logging . 34

ii

CONTENTS

4.4 Summary . 34

5 Evaluation of the Erroneous Objects Generated 36

5.1 Abstract Syntax Tree for Static Analysis . 37

5.2 Expremiental Setup . 38

5.3 Evaluation . 39

5.4 Impact of Feeback Driven Corpus Generation 45

5.5 Performance of AST Static Analyzer . 47

6 Conclustion And Future Work 49

6.1 Summary of Answers to main research questions 49

6.2 Future Work . 51

References 54

6.3 Artifact Check-List . 59

6.4 Description . 59

6.5 Software Dependencies . 60

6.6 Experiment Workflow . 60

6.7 Self Reflection . 61

iii

List of Figures

1.1 Frequency distribution of words after an error string (max. 100 characters). 3

2.1 Kubernetes architecture. 7

2.2 Fuzzing flow with feedback loop. 14

3.1 Control-plane to kubelet flow. 17

3.2 Design functional requirments. 21

3.3 High-Level design of erroneous object generation flow. 22

3.4 Protobuf tree structure of converted Pod yaml. 26

3.5 Protobuf to Structs, Structs to Protobuf, Yaml to Protobuf, Deserializer flow. 27

4.1 Implementation of erroneous object generation flow. 31

4.2 Protobuf struct mutation. 32

5.1 Expremiental setup to evaluate the fuzzer with corpus sharing. 38

5.2 String-based input fuzzer for Kubernetes components. 40

5.3 Metrics of the error objects generated. 44

5.4 HandleHostNameConflicts and GetPodsToSync feature coverage on parallel

workloads. 45

5.5 Feature coverage on parallel workloads without corpus feedback. 46

5.6 Feature coverage on parallel workloads with corpus feedback. 46

5.7 Coverage growth of 3 sample functions mentioned over time in hours (with

vs without corpus). 47

iv

List of Tables

1.1 Test coverage report of Kubelet. 4

5.1 Technical specifications of the experiment infrastructure. 38

5.2 String-based input fuzzer max coverage and performance output on the

Kubelet. 42

5.3 Structure-aware fuzzer max coverage and performance output on the Kubelet. 43

5.4 Comparison of time taken to index against the LogFile size of each fuzzed

component on 10 workers. 48

v

1

Introduction

Datacenter resource managers such as the Kubernetes (1) are complex software systems.

Kubernetes has many functionalities, exceeding 256 features and encompassing thousands

of configurations. Comprised of tens of components and millions of lines of code, Kuber-

netes’ complexity challenges users in debugging erroneous configurations and identifying

issues stemming from software bugs. This work addresses the technical and scientific prob-

lem of optimizing Kubernetes error localization by integrating structured data generation

using fuzzing to generate errors in Go (2) components. Current fuzzing methodologies

in Kubernetes predominantly rely on Go-fuzz (3) (4) and OSS-fuzzers (5) with unstruc-

tured random data, potentially missing errors and bugs due to the lack of structured input

data scenarios. Fuzzing is a cornerstone in identifying errors and security issues (6), and

incorporating its methodology directly contributes to Kubernetes core APIs’ overall effi-

ciency and reliability. The problem is timely, given the dynamic nature of Kubernetes

development and its continuous evolution (7). As Kubernetes is widely adopted across

diverse cloud environments (8), a structured fuzz testing approach becomes increasingly

important to address the error localization issue. Solving this problem will significantly

improve error detection accuracy within Kubernetes core APIs. A more precise fuzzing

methodology can prevent potential crashes, errors, and bugs, ensuring the integrity and

reliability of applications orchestrated by Kubernetes. Failure to address this problem may

result in hardness finding errors and localizing within Kubernetes core APIs. This poses a

severe risk of crashing containerized applications and service disruptions and the inability

to localize the error to mitigate the problem in reasonable times. Solving this problem

will enable a new class of Kubernetes systems characterized by enhanced efficiency and

reliability.

1

1. INTRODUCTION

1.1 Context

We analyze Kubernetes test coverage using existing literature and our own static analysis.

Existing work shows that end-to-end (e2e) test feature coverage is only 41% across 256

features (9). The feature coverage distribution follows: Quota management and Container

security yield a feature coverage of 100% and 90%, respectively. Application configuration

and deployment exhibit a feature coverage of 83%, while Quality of Service(QoS) manage-

ment aspects average 44% coverage. The study also notes that four other elements have

coverage ranging from 33%

A detailed analysis in the study (9) also reveals significant differences among vendors,

particularly in terms of customization interfaces and error occurrences. Despite offering

extensive customization interfaces, Amazon Elastic Kubernetes Service (EKS) (10) is found

to have the most errors in e2e tests, potentially impacting its usability for highly customized

Kubernetes clusters. Conversely, Google Kubernetes Engine GKE (11) stands out for its

out-of-the-box feature support, with solid feature lock-in tendencies. These observations

underscore the importance of Kubernetes’ reliability and integrity through improved error

detection methods, such as structured fuzzing. By addressing the identified challenges,

Kubernetes users and vendors can benefit from enhanced error detection accuracy and

improved cluster migration experiences, thereby ensuring the resilience and dependability

of containerized applications orchestrated by the platform.

To investigate Kubernetes errors further, I have retrieved data from ServerFault (12), a

platform known for its technical discussions. A data mining approach was used to gather

relevant data and preprocess it to analyze it meaningfully. Analyzing the distribution

of these terms can provide insights into common issues, troubleshooting methods, and

areas requiring further investigation within Kubernetes environments. This approach offers

valuable insights into the frequency and contextual relevance of errors encountered within

Kubernetes deployments by specific terms within relevant discussions. The most repeated

term is kubelet with the error-related strings in the question and answer section. as

shown in Table 1.1, and this also adds relevance to the study (9) as there were issues with

Volume plugins and Node authorizations, which are part of kubelet. This can help vendors,

customers, and providers enhance the orchestration process and quickly resolve conflicts.

Software development demands different testing methodologies to ensure the integrity

of a system. Kubernetes is a complex and large distributed system. Testing method-

ologies don’t cover everything that is required for a code base. One of the reasons or

2

1.2 Problem Statement

Figure 1.1: Frequency distribution of words after an error string (max. 100 characters).

bottlenecks is the lack of or insufficient data needed and input structures. This is evi-

dent in the case of Kubernetes, where the code coverage analysis shows significant gaps

in critical components, but not limited to modules such as kubelet_network_linux.go

and kubelet_server_journal_linux.go from Table 1.1, which have zero percent test

coverage.

The error-handling paths remain unexplored because of insufficient test coverage or data

generation. This could lead to reliability when the system is subjected to unexpected con-

ditions, as mentioned with volume plugins in the case of this study (9). Given Kubernete’s

role in managing the containerized application, including the generated input structures

and developing test cases that can handle errors and edge cases is essential.

1.2 Problem Statement

Given the nature of Kubernetes and its multitude of features and configurations. The

challenge lies in enhancing error detection and localization within its core APIs. The

project aims to increase the reliability of the Kubernetes by using the structure-aware

fuzzing to generate erroneous objects. Mapping errors to specific configuration parameters

is critical for troubleshooting and debugging in complex systems like Kubernetes. With

3

1. INTRODUCTION

File Path Coverage Percentage (%)
k8s.io/kubernetes/pkg/kubelet/active_deadline.go 77.3
k8s.io/kubernetes/pkg/kubelet/kubelet.go 40.8
k8s.io/kubernetes/pkg/kubelet/kubelet_getters.go 32.2
k8s.io/kubernetes/pkg/kubelet/kubelet_network.go 40.0
k8s.io/kubernetes/pkg/kubelet/kubelet_network_linux.go 0.0
k8s.io/kubernetes/pkg/kubelet/kubelet_node_status.go 19.8
k8s.io/kubernetes/pkg/kubelet/kubelet_node_status_others.go 0.0
k8s.io/kubernetes/pkg/kubelet/kubelet_pods.go 50.7
k8s.io/kubernetes/pkg/kubelet/kubelet_resources.go 0.0
k8s.io/kubernetes/pkg/kubelet/kubelet_server_journal.go 0.0
k8s.io/kubernetes/pkg/kubelet/kubelet_server_journal_linux.go 0.0
k8s.io/kubernetes/pkg/kubelet/kubelet_volumes.go 44.4
k8s.io/kubernetes/pkg/kubelet/pod_container_deletor.go 16.2
k8s.io/kubernetes/pkg/kubelet/pod_workers.go 1.1
k8s.io/kubernetes/pkg/kubelet/reason_cache.go 84.0
k8s.io/kubernetes/pkg/kubelet/runonce.go 0.0
k8s.io/kubernetes/pkg/kubelet/runtime.go 53.2
k8s.io/kubernetes/pkg/kubelet/volume_host.go 14.8

Table 1.1: Test coverage report of Kubelet.

new test cases that cover previously untested parts of the code, the likelihood of behavioral

regression and unintended changes in functionality due to updates or modifications can

be reduced. This makes the system more stable and ensures that new changes do not

inadvertently disrupt existing functionalities. By reaching the uncovered code and creating

errors, there will be a local store of multiple input configurations (erroneous configurations)

that can be used for regression testing and a local database of coverage, which can be used

to localize the errors with precision and reduce the time for developers or vendors to debug

the issues in lesser time.

1.3 Research Questions

• RQ1: What fuzzing design choices enable generating erroneous objects that target

error modes in Kubernetes?

The design needs to generate error objects capable of creating the error states in

Kubernetes. Error data generation needs to understand the Kubernetes configuration

inputs, which are structures. The design choices made here need to pass structures

4

1.4 Challenges

to Kubernetes APIs and must be evaluated to see if they will be accepted.

• RQ2: How to implement the fuzzing framework using Go structures to explore Ku-

bernetes errors?

The focus would be on developing a tool that leverages Go’s capabilities to produce

data that can systematically trigger a variety of failure scenarios within Kubernetes’

system, integrating fuzzing libraries, which are predominantly unsupported or de-

veloped for a wide range of cases. These libraries are highly customizable, and

complexities arise while combining them. We must ensure the integration does the

erroneous objects we desire.

• RQ3: How to evaluate the efficacy of the fuzzing approach for Kubernetes error object

generation?

Does the initial hypothesis of generating the erroneous objects work with the design

choices made? What’s the code coverage and effectiveness compared to the standard

unstructured fuzzing inputs?

1.4 Challenges

The critical challenge is generating these erroneous structured objects by getting depen-

dencies to work together without disruption. One crucial challenge is implementing custom

mutators that understand Kubernetes’ specific structures and can develop meaningful mu-

tations that are likely to uncover errors in component interaction and create a fuzzing

framework tailored to Kubernetes that is capable of generating structured aware muta-

tions. Designing a fuzzing framework using a custom mutator tailored to Kubernetes is

complex. The framework must generate syntactically correct and semantically meaningful

inputs to Kubernetes. It must also be seamlessly integrated with Kubernetes testing en-

vironments to automate the fuzzing process effectively. This framework should integrate

with Kubernetes environments to create errors within Kubernetes components. Moreover,

it is important to employ static analysis as well, for instance, using the AST to inspect

the kubelet for issues and to find out if any fuzzing errors have affected the coverage that

has been inspected with the AST. Coverage stands as a critical evaluation metric for this

project.

5

1. INTRODUCTION

1.5 Societal Relevance

As highlighted by Iosup et al., our society and economy’s dependence on computer systems

has been a substantial requirement for jobs and a large share of the GDP in the Nether-

lands (13). As stated in the manifesto, there are four grand societal challenges. Research

questions are developed in relevance to building better distributed systems, which have a

better understanding of reliable computing mechanisms, which are highly relevant in this

era of massive containerized cloud computing. The findings of this work help to address

two out of four challenges.

(Challenge 1: Manageability) The focus on optimizing error detection, localization,

and dealing with extensive configurations and features directly relates to managing the

growing complexity of large-scale distributed systems such as Kubernetes’. (Challenge

2: Responsibility) Ensuring Kubernetes’ core APIs are more reliable by enhancing error

detection aligns with responsible infrastructure development. The framework increases

security, performance, and availability.

1.6 Plagiarism Declaration

I confirm that this thesis work is my own independent work, is not copied from any other

source (Person, Internet, or Machine), and has not been submitted elsewhere for assess-

ment.

1.7 Thesis Outline

The following is the organization of the remainder of this thesis. In Chapter 2, I will discuss

the necessary background knowledge required to understand the fuzzing framework that

will be built. In Chapter 3, I will explain the high-level and low-level design in detail. In

Chapter 4, we discuss the evaluation of the results and their implications.

6

2

Background

Kubernetes has critical components that communicate with each other through the Kuber-

netes API server. Kubernetes manages its containers using the master-worker architecture.

Containers run on each worker node and report to the master node using the Kubernetes

API server. (14)

Internet

WORKER NODE

PODS

PODS

CONTAINERS CONTAINERS

MASTER NODE

KUBE-PROXYKUBELET

KUBE-CONTROLLER KUBE-CONTROLLER

KUBE API SERVER

ETCD

Figure 2.1: Kubernetes architecture.

7

2. BACKGROUND

2.1 Kubelet, Kubernetes-API-server, and ETCD

Kubelet is Kubernetes’s (K8s) most essential and primary controller in Kubernetes (15).

The Kubelet implements the primary Pod and Node APIs that drive container execution

in Kubernetes. Without these APIs, Kubernetes (K8s) would be a basic CRUD-oriented

REST application framework (15). By default, Kubernetes (K8s) runs isolated application

containers decoupled from each other and from the hosts on which they execute. This

allows for independently managing individual applications and the underlying cluster in-

frastructure (15). Kubernetes (K8s) runs application containers as its default mode of

execution. Containers are isolated from each other and from the hosts they run on. Ku-

bernetes (K8s) provides pods that host multiple containers and storage volumes, making

packages and deploying applications easier. Pods help separate deployment and build-time

concerns, facilitating migration from physical or virtual machines.

Kubernetes-API-server: Kubernetes-API-server is the core part of K8s because it is

in charge of offering K8s API, which is used to control and manage K8s’ components. Since

the Kube-API-server needs to talk with each component, each component must connect

to the Kube-API-server.

ETCD server ETCD is a distributed key-value database, which makes retrieval and

management very flexible. It stores the cluster’s confirmation data and the status of

resources. When the Kube-API-server receives new commands, it will first update the

ETCD data and inform other control components.

2.2 Protobuf in Kubernetes

The primary data format Kubernetes utilizes to exchange objects between these compo-

nents is protobuf, which is then translated into go structs using a serializer hosted within

the Kubernetes API machinery. Most traffic within Kubernetes is directed toward intra-

cluster components, with up to 90% of all requests served by the APIs being for internal

cluster components, such as nodes, controllers, and proxies. During initial versions of ku-

bernetes, JSON serialization and deserialization were causing network size issues and sig-

nificant memory and CPU usage due to the amount of garbage collection required during

operation. The Kubernetes team has conducted experiments using protobuf as a medium

to exchange objects (16) and has shown impressive results regarding CPU usage reduc-

tion during serialization and deserialization. Specifically, the Kubernetes developers have

achieved a 10x reduction in CPU use, a 2x reduction in the size of data being transmitted

8

2.2 Protobuf in Kubernetes

over the network, and a 6-9x reduction in the number of objects created on the heap during

serialization.

Protocol Buffers (protobuf) is a language-neutral, platform-neutral, extensible mech-

anism for serializing the structured data (17). Protobuf provides a serialization format for

packets of typed, structured data up to a few megabytes. Protocol buffer messages and

services are described by .proto files, and the format of the protobuf is shown below with

an example of a schema that’s required for personal details in Listing 1.

syntax = "proto2";
package tutorial;

message Person {
optional string name = 1;
optional int32 id = 2;
optional string email = 3;

enum PhoneType {
PHONE_TYPE_UNSPECIFIED = 0;
PHONE_TYPE_MOBILE = 1;
PHONE_TYPE_HOME = 2;
PHONE_TYPE_WORK = 3;

}

message PhoneNumber {
optional string number = 1;
optional PhoneType type = 2 [default = PHONE_TYPE_HOME];

}

repeated PhoneNumber phones = 4;
}

message AddressBook {
repeated Person people = 1;

}

Listing 1: Protobuf file for AddressBook and Person messages.

Proto compiler is invoked at build time on .proto files to generate code for different

languages. Each generated class contains accessors for each field and methods to serialize

and parse the whole structure to and from raw bytes. As in the above example, we can

see that nested messages can be derived. For example, the PhoneNumber type is defined

inside Person. Kubernetes uses this leverage to convert go structs and package the proto

files accordingly. Each component has proto files generated using the predefined structures

9

2. BACKGROUND

in Go files. To generate these proto files, Kubernetes uses a third-party library called

gogo-protobuf (16). In this project, we use the same protobuf files, convert them to C++

headers, and include files to integrate them with libprotobuf-mutator. Listing 2 is the

example of converting the protobuf file into a C++ format with protobuf C compiler.

// name
inline bool has_name() const;
inline void clear_name();
inline const ::std::string& name() const;
inline void set_name(const ::std::string& value);
inline void set_name(const char* value);
inline ::std::string* mutable_name();

// id
inline bool has_id() const;
inline void clear_id();
inline int32_t id() const;
inline void set_id(int32_t value);

// email
inline bool has_email() const;
inline void clear_email();
inline const ::std::string& email() const;
inline void set_email(const ::std::string& value);
inline void set_email(const char* value);
inline ::std::string* mutable_email();

// phones
inline int phones_size() const;
inline void clear_phones();
inline const
::google::protobuf::RepeatedPtrField< ::tutorial::Person_PhoneNumber >&
phones() const;
inline
::google::protobuf::RepeatedPtrField< ::tutorial::Person_PhoneNumber >*
mutable_phones();
inline const ::tutorial::Person_PhoneNumber& phones(int index) const;
inline ::tutorial::Person_PhoneNumber* mutable_phones(int index);
inline ::tutorial::Person_PhoneNumber* add_phones();

Listing 2: C++ methods of the Person message from compiled protobuf file.

10

2.3 Structure Aware Fuzzing

2.3 Structure Aware Fuzzing

The term Fuzzing has become a synonym for penetration testing. Bart Miller first used

the term fuzzing in the paper: An empirical study of the reliability of UNIX utilities (18).

Bart Miller could crash or hang many utility programs on each system (from 24%-33%)

like vi, cshell, and emacs. There were also new fuzzing cases on GUI apps done by the

same group (19). The latest recent research (20) allowed smart fuzzers to use differential

testing as the test oracle instead of random bits used in fuzzing, allowing them to find 80

gcc (21) bugs and 200 clang (22) bugs. Microsoft research group took a step further to

introduce fuzzing by using symbolic execution and dynamic analysis (23). In general, the

fuzzing taxonomy is divided into three parts:

White box fuzzing: It is a testing technique that uses internal program structure

and code to execute the program with random inputs. It combines static and dynamic

analysis to ensure maximum code coverage and test all possible execution paths. This

method typically includes a "symbolic execution" component to explore various branches

and gather them into constraints. Let’s assume the code Listing 3.

int foo(int x) {
int y = x + 2;
if(y == 5)

abort();
}

Listing 3: C function example with potential abort condition.

In this case, black box fuzzing has a low probability of getting the check conditional

statement above, depending on the input x. However, in the case of white box fuzzing:

SAGE (23), the input variable x takes the branch of the conditional statement and gen-

erates the path constraint x+2 != 5. Once this constraint is negated and solved, it yields

x = 3, providing a new input that causes the program to follow the then branch of the

conditional statement. This will generate a crash because of abort().

Grey box fuzzing: This fuzzing technique uses coverage feedback to learn how to reach

deeper into the program. One example is AFL(American fuzzy loop) (24), which leverages

some program analysis but not heavyweight analysis or constraint solving. Instead, it uses

lightweight program instrumentation to get information about the input coverage. If the

input increases coverage, it is added to the seed corpus for further fuzzing. Below are

two categories in grey box fuzzing. Our current project falls into the grey box fuzzing as

11

2. BACKGROUND

we know the structure of input corpus, giving feedback to the fuzzer and allowing further

mutations.

• Generative-based fuzzers: These fuzzers are complex and synthesize test cases

from scratch according to a predefined grammar. One of the examples is CSmith

(20)

• Mutation-based fuzzers: These kinds of fuzzers modify(non-)random test cases

and treat inputs as a bag of bits. Examples of this are AFL(American fuzzy loop) (24)

and libFuzzer (25). Mutation-based fuzzers can be simple or intelligent. A simple

fuzzer randomly generates the input without knowing the data structure. These

simple fuzzers only check the parsing of highly data-structured inputs, leading to an

invalid rejection in initial parsing (26).

Black box fuzzing: In this type of fuzzing, there is no coverage-feedback. The input

type is randomly mutated, as discussed before.

2.3.1 Structure Aware Mutations

Generation-based fuzzers create inputs based on a pre-defined grammar for a single input

type. In contrast, mutation-based fuzzers like libFuzzer and AFL are not limited to one

input type and require no grammar definitions. However, lacking an input grammar can

lead to inefficient fuzzing for complicated input types like protobuf (4). Coverage Guided

Fuzzers (CGF) work by changing inputs at the level of their bit and byte representations.

CGF considers mutated inputs attractive when they cause the program to explore new

sections or paths of the code. While this method is effective for small and unorganized

inputs (27), it may not work well for highly structured inputs that need to follow specific

rules or formats. Essentially, uncontrolled mutations can cause the fuzzer to waste time

generating inputs that the initial stages of the program reject, resulting in little to no

improvement in code coverage (28). These mutations generate inputs that spend more

time rejecting inputs in the initial parsing stages, resulting in very low code coverage.

Structure-aware mutations solve the exact problem by generating highly structured inputs.

This minimizes the time and allows adherence to specific rules and formats set by input

requirements in a program. The importance of structured aware mutations is being actively

explored. Google Chromium team used libprotobuf-mutator(29) to find more than 50 bugs

or vulnerabilities in libraries like SQLite (30) and Linux kernels (31)

12

2.3 Structure Aware Fuzzing

Integrating libprotobuf-mutator (LPM) with libFuzzer can address some of the inefficien-

cies faced by traditional mutation-based fuzzers, as mentioned above when dealing with

complex input types such as protobufs.

• Structured Input Generation: This Structure-aware input generation ensures

that the inputs are syntactically correct and semantically meaningful within the

context of the target application, thereby bypassing the initial rejection faced by

improperly structured inputs. Libraries such as libprotobuf-mutator (29) and AFLs-

mart (32) are designed to create and mutate structures while respecting their schema.

• Coverage-Guided Mutation with Structure Awareness: By integrating LPM

with libFuzzer, fuzzers benefit from both coverage-guided mutation and Structure-

aware input generation. libFuzzer adapts its mutations based on the code paths

activated by the inputs. When these inputs are structured correctly (LPM), libFuzzer

can more effectively direct its efforts toward unexplored and potentially vulnerable

code areas.

• Feedback Loop Enhancement: The feedback from libFuzzer about which code

paths have been triggered by the inputs can be used to refine the mutations applied

by LPM further. This continuous loop of generation, mutation, and feedback allows

for a more targeted approach to discovering vulnerabilities, particularly in complex

software systems that use structured formats like protobufs.

• Reduced Wastage: With LPM, the chances of generating irrelevant or syntacti-

cally incorrect inputs are significantly reduced, decreasing the computational waste

commonly seen in fuzzers when dealing with complicated input types. The inputs

are more likely to reach deeper into the application logic before being rejected, if at

all, enhancing the overall efficiency of the fuzzing process.

libFuzzer mainly has two functions leveraged by the libprotobuf-mutator to generate

custom mutation functions as shown in the Listing 4 (33).

This is the following execution flow of the Custom mutators in LLVM using libfuzzers

2.2:

• Initialization: When libFuzzer initializes, it starts with an empty corpus or the set

of initial inputs provided.

13

2. BACKGROUND

// Mutates raw data in [Data, Data+Size) inplace.
// Returns the new size, which is not greater than MaxSize.
// Given the same Seed produces the same mutation.
size_t LLVMFuzzerCustomMutator(uint8_t *Data, size_t Size,
size_t MaxSize, unsigned int Seed);
// libFuzzer-provided function to be used inside LLVMFuzzerCustomMutator.
// Mutates raw data in [Data, Data+Size) inplace.
// Returns the new size, which is not greater than MaxSize.
size_t LLVMFuzzerMutate(uint8_t *Data, size_t Size, size_t MaxSize);

Listing 4: LLVM custom mutator in libFuzzer.

Initialization

Fuzzing Loop

Mutation

Execution

Feedback

Figure 2.2: Fuzzing flow with feedback loop.

• Fuzzing Loop: LibFuzzer then enters a loop where it repeatedly calls the fuzz target

function (LLVMFuzzerTestOneInput) with mutated inputs generated by the mutator

(LLVMFuzzerCustomMutator).

• Mutation: Inside the LLVMFuzzerCustomMutator function, the mutator mutates

the input data and returns it to libFuzzer.

• Execution: LibFuzzer then passes this mutated input to LLVMFuzzerTestOneInput

for execution. If the input triggers a crash or some other error within LLVMFuzzerTe-

stOneInput, libFuzzer detects it.

14

2.3 Structure Aware Fuzzing

• Feedback: Upon detecting a crash or error, libFuzzer reports it, and the fuzzing

process continues.

This allows the libprotobuf-mutator to mutate the protobuffer’s tree structures and indi-

vidual fields. The Structure-aware fuzzer uses this flow to generate erroneous configurations

that create errors. libprotobuf-mutator manipulates protobuf data structures to produce

new, potentially exciting inputs fed into the software being tested. This manipulation is

based on the protobuf’s schema, allowing the mutator to create logically consistent but

unexpected message configurations.

15

3

Design of Kubernetes Erroneous
Object Generation

Main Contributions

• Main Contribution 3.1 (MC3.1): We analyze the requirements to gen-
erate error objects that adhere to Kubernetes input structures and trigger
meaningful errors.

• Main Contribution 3.2 (MC3.2): We design Structure-aware fuzzers to
inject data into Kubernetes APIs and handle nested structures such as Pods,
Nodes, and Containers.

• Main Contribution 3.3 (MC3.3): We implement coverage-directed fuzzing
to enhance input exploration by increasing the code paths executed in the
kubelet using a feedback-driven system and a global input corpus.

This chapter presents a design for erroneous object generation using struct-aware fuzzing.

The chapter is organized as follows: Section 3.1 analyzes the requirements for the design

choices to generate the error objects. Section 3.2 provides detailed requirements for the

design of a struct-aware fuzzing system and passes them to Kubernetes components. Sec-

tion 3.3 presents a high-level design of the system. Section 3.4 presents a low-level design

of the system, a more thorough system view, and specifies each step required to obtain the

error objects.

3.1 Requirement Analysis

This project’s primary goal is to generate the erroneous configuration for Kubernetes,

mainly the kubelet component. Kubelet is a vital part of the whole Kubernetes ecosystem.

16

3.1 Requirement Analysis

The primary node agent runs on each node in the cluster. Its primary responsibility is

maintaining the set of pods, which are essential for encapsulating containerized applica-

tions.

Kubelet takes instructions from the Kubernetes API server to manage the lifecycle of the

Pods, like starting, stopping, and maintaining application containers based on the system

and Kubernetes instructions (34). As such, it directly impacts the deployment speed and

stability of applications running in the Kubernetes environment. Kubelet checks the health

of the pods and reports back to the control plane, as shown in Figure 3.1. This allows the

control plane to maintain the cluster’s desired state by restarting failed containers. (35).

The ability of the kubelet to accurately monitor and report container health is important

for auto-healing functionalities.

Kubelet also plays an important role in resource allocation. It ensures that each container

has enough resources to run as specified but does not exceed the allocated resources. This

will prevent resource issues and maintain the quality of service across all nodes. Kubelet

interacts with the container runtime through the Container Runtime Interface (CRI) to

manage the lifecycle of containers within pods. This includes pulling images from container

registries, starting and stopping containers, and collecting container logs. This interface

allows Kubernetes to support multiple container runtimes, promoting flexibility and choice

in deployment architectures (15)

Figure 3.1: Control-plane to kubelet flow.

17

3. DESIGN OF KUBERNETES ERRONEOUS OBJECT GENERATION

Since kubelet uses protobuf for a significant portion of its configuration and communi-

cation (especially in settings like network configurations and API interactions), protobufs

can generate structured inputs that respect the required format but vary significantly in

content. This is required for triggering edge cases and allows us to cover the code that

regular unstructured inputs can’t reach. protobufs allows for the customization of muta-

tions based on the specific use cases of Kubernetes. By understanding the fields and values

that are more likely to lead to states of interest within kubelet, fuzzers can be designed to

explore particular areas of the code more broadly or stress test specific functionalities.

3.1.1 Requirement Analysis 1: Structured Input Generation

To invoke a series of erroneous configurations for a particular kubelet component, the

structure of injection objects must be in the nested form as multi-level sub-objects. Let’s

take a simple Pod structure with ObjectMeta and Status.

pods := []*v1.Pod{
{ObjectMeta: metav1.ObjectMeta{

UID: "1",
Name: "completed-pod1",
Namespace: "ns",
Annotations: make(map[string]string),

},
Status: v1.PodStatus{

Phase: v1.PodFailed,
ContainerStatuses: []v1.ContainerStatus{

{
State: v1.ContainerState{
Terminated: &v1.ContainerStateTerminated{},

},}}}}}

Listing 5: Go code defining a list of Pods with status information.

These rules need to be considered for erroneous configuration generation for the structure

in Listing 5.

• Invalid Pod Phases: Set the Phase to a non-existent or deprecated value to test

how kubelet handles unknown states.

• Container State Corruption: Alter the ContainerState to simultaneously include

conflicting states, such as Running and Terminated.

18

3.1 Requirement Analysis

If any considerations are not taken, it will not cover the path required by a particular

function or component in kubelet. Such considerations are necessary before we generate

structure inputs to create error objects. The design choice should be capable of under-

standing such complex input structures.

3.1.2 Requirement Analysis 2: Key Considerations for Generating Er-
roneous Objects

• Understanding the Structure: Kubernetes objects are complex and nested. Ku-

bernetes objects can be described as quite complicated and hierarchical. To produce

error objects for the kubelet, the fuzzer needs to understand the configurations of the

kubelet. This means understanding protobuf definitions and the relationships that

are employed by kubelet. Also, a structured input generator should understand the

hierarchy and relationships.

• Field Interdependencies: There are many configuration fields whose usage is con-

ditional on other fields. For instance, a particular field may be valid only when

another is set to a specific value. It is required to recognize these interdependencies

to create a valid configuration that contains errors.

• Boundary Values: Using input values that are either the maximum or the minimum

value for a numerical field or string’s maximum/minimum lengths can help bring out

off-by-one errors or buffer overflows or help find new coverage paths. Such inputs

should be a part of the erroneous object generation strategy.

• Unexpected Combinations: Although each field may contain some valid values,

some combinations of these fields can cause problems. It is important to generate

such configurations that check all these combinations, as this will help detect bugs.

3.1.3 Requirement Analysis 3: Coverage Directed Fuzzing

Coverage-directed fuzzing is essential to explore the vast input space of kubelet configura-

tions effectively. This approach maximizes the code paths exercised during the error object

generation.

• Code Coverage looks into the amount of the kubelet code executed during fuzzing.

Various methods for evaluating coverage exist, such as line, branch, path coverage,

and others. Within kubelet, it is required to maximize branch and path coverage to

avoid testing unnecessary execution paths.

19

3. DESIGN OF KUBERNETES ERRONEOUS OBJECT GENERATION

• Feedback Mechanism is established where the fuzzer receives information about

which a given input executed parts of the code. This is done with the help of a global

input corpus. This feedback is used to guide the generation of new inputs, aiming to

explore previously unexecuted paths.

• Guided Exploration Employ a coverage-guided exploration strategy where the

fuzzer prioritizes inputs that trigger new coverage. This requires dynamically up-

dating the global input corpus and using default configurations on pod and node

structs.

• Long-Running Fuzzer Since kubelet configurations can involve complex interac-

tions and states, support long-running fuzzers to capture state-dependent issues.

This ensures that the kubelet runs in a stable test environment and can recover from

any erroneous states introduced by the fuzzing process.

3.2 Requirements

These requirements specify the functional and non-functional requirements and technical

constraints. They clearly understand what the system should do and its expected behavior.

3.2.1 Functional Requirements

Functional requirements specify what the system should do. For this project, these include,

as shown in Figure 3.2:

• FR1 - Structured Data Generation: The system must generate structured input

data that adheres to the Kubernetes API specifications. The system should support

the creation of erroneous objects to target known function calls in kubelet

• FR2 - Input Injection and Error Detection: The tool must be able to inject

generated erroneous objects into Kubernetes mock functions, which call the kubelet

APIs. The system should detect and log the errors triggered by these injections.

• FR3 - Data analysis and feedback using corpus: Provide detailed reports on

the errors detected, including traces, status, and the conditions that triggered them.

Maintain a database of generated configurations and associated coverage metrics.

20

3.2 Requirements

Structured
Data

Generation
Input Injection Error Detection Error Creation

Corpus

Figure 3.2: Design functional requirments.

3.2.2 Non-Functional Requirements

Non-functional requirements describe how the system performs its functions. These include

performance, usability, reliability, etc.

• NFR1 - Performance: The tool must efficiently generate and process error con-

figurations to avoid excessive computational overhead.

• NFR2 - Scalability: The system should handle a variety of Kubernetes components

and complex configurations. It should also ensure scalability to generate continuous

error configurations as Kubernetes evolves.

• NFR3 - Reliability: Ensuring the accuracy and consistency of generated error

objects. The system should handle and recover gracefully from failures during exe-

cution.

• NFR-4 - Usability: Providing a user-friendly configuring and running fuzzer in-

terface. Include documentation and examples for users to understand and utilize the

tool effectively.

• NFR-5 - Distributed Corpus: The system should be able to share the corpus be-

tween different instances to maintain coverage uniformity across the fuzzing process.

3.2.3 Technical Constraints

These are the limitations or constraints imposed on the project.

• Compatibility: Ensure compatibility with the latest stable versions of Kubernetes

and Go. The tool should support major operating systems used in Kubernetes de-

ployments (e.g., Linux, Windows).

21

3. DESIGN OF KUBERNETES ERRONEOUS OBJECT GENERATION

• Resource Usage: Optimize the tool to run efficiently within the available hardware

and network constraints.

3.3 High-Level Design

This section presents the design of error object generation, which is applied specifically to

kubelet. The Figure 3.3 below gives a high-level picture of how the data is passed until

it reaches the kubelet functions. The requirements from the previous section should be

reflected in the design system.

Initializer
libProtobuf-

Mutator Go Structures
Mock

Kubernetes

Error or Pod
or Node
Status

Logfile

Fuzzer Deserializer Kubernetes API calls

AST Scan

Corpus N

Error Objects

Corpus 1 Corpus 2

Instance 2Instance 1 Instance N

Fuzzer Fuzzer

A B

C

D
E

F

G

H J

Figure 3.3: High-Level design of erroneous object generation flow.

The design system consists of three steps. The first step is the Fuzzer; the libprotobuf

mutator(B) is initiated in this step (A) using different initialize calls provided, and as

for the input, we need to pass Kubernetes structs as protobuf objects to the fuzzer input.

Hence, it generates the structured data, which satisfies the { FR1 }. To fulfill the { FR2

}, All the individual mock kubelets (E) must be rewrapped with the unmarshaler. The

protobuf data needs to be converted into a format that kubelet APIs accept. Before passing

the go structs to kubelet in the second step, they must be converted using Unmarshaler.

This function takes the protobuf data and changes them to the structures accepted by

the kubelet APIs. The Go structs (D) are passed on to all mock Kubelet APIs in

the third step. In case of errors or crashes (F), they are sent to the log file (G) for

further evaluation later, then further sent back to the input corpus. If Errors or pod or

node status (F) are reported during the fuzzing, the field inputs are sent back to the

22

3.4 Components of the Erroneous Object Generation Flow

input corpus. The input corpus is also used as a feedback system to the fuzzer (C), as we

use the fuzzer for the individual field mutation, which satisfies the { FR3 }. The feedback

system is distributed, and the input corpus should be synced temporally.

3.4 Components of the Erroneous Object Generation Flow

The error object generation flow has three main components. Examining each component is

essential, and this section explains its specific functionalities. These components depend on

each other as the generation flow is a continuous loop, and the dependencies are interlinked

with Kubernetes’ tight specifications and requirements.

3.4.1 Design of the Structure-Aware Fuzzer

This Structure-Aware Fuzzer follows the { FR1 }, which is structure data generation (3.1).

The project uses the libprotobuf-mutator and libfuzzer (A) as discussed. But these are the

primary rationale behind choosing the fuzzer design, as shown in Figure 3.3. Kubernetes

uses advanced data structures that are encoded with the aid of protocols such as Protocol

Buffers (protobuf). Most fuzzers with simple text formats like string, bytes, integers, and

bits cannot create even slightly valid and relevant test cases for advanced data structures

such as Go Structures in kubelet.

• Complexity of Kubernetes Structs :

– Hierarchical and Nested Structures: Kubernetes defines various resources such

as Pods, Services, Deployments, StatefulSets, ConfigMaps, Secrets, etc. De-

ployments, StatefulSets, ConfigMaps, Secrets, etc. Each resource type has its

schema, which has a schema with child elements.

– API Versions and Compatibility : Kubernetes has several API versions where

the fuzzer must accommodate different resources, such as v1 and v1beta1. This,

however, ensures that older web application versions do not stop working yet

increases challenges such as knowing which version of API to work with and

why.

– Deprecations and Migrations: Users will eventually need to adopt new versions

and structures as some API versions and fields go out of use and are replaced

with new ones.

23

3. DESIGN OF KUBERNETES ERRONEOUS OBJECT GENERATION

– Declarative Configuration: Kubernetes works using a declarative model where

all the issues related to the state are dealt with during cluster-level declaration.

The actual state is persistent at the Kubernetes control plane, which constantly

works to resolve issues between the two state models.

– Persistent Volumes (PVs) and Persistent Volume Claims (PVCs): This includes

creating PVs, PVCs, and Storage Classes, as well as knowing how binding works.

• Ability to Fuzz Complex Structs:

Let’s consider a simple pod definition in YAML. By converting this to protobuf, the

nestfields are represented in the tree from, shown in Figure 3.4. A normal fuzzer ran-

domly mutates the string or inputs, which will not adhere to the expected structure

or sometimes doesn’t provide exciting results. This will lead to many invalid test

cases that do not provide helpful feedback for the fuzz. This will be explored more

in evaluation with examples.

A protobuf-mutator generates inputs that conform to the schema defined by the pro-

tobuf specifications. This ensures the generated data is syntactically and semantically

valid, increasing the likelihood of discovering errors that only manifest with valid in-

puts. Protobuf-mutator employs intelligent mutation strategies that are aware of the

data structure (4). This means they can perform more meaningful mutations, such

as changing values within a range, swapping nested elements, or adjusting the length

of repeated fields, which can lead to the discovery of more errors. Using a protobuf-

mutator for fuzzing stateful APIs might be slower than String-based input fuzzing or

more complicated than fuzzing action traces encoded as a sequence of bytes { NFR2

}. However, this approach is more flexible and maintainable since the protobuf type

is easier to understand and extend than a custom byte encoding.

3.4.2 Design of the Unmarshaler: Converting Protobufs to Go Structs
supporting Kubernetes

This section delves into how serialized data, particularly in Protocol Buffers format, is

converted into Go structs usable within Kubernetes systems. The unmarshaler ensures data

integrity and operational correctness in dynamic, distributed environments like Kubernetes

and needs to satisfy the { FR2 }.

24

3.4 Components of the Erroneous Object Generation Flow

apiVersion: v1
kind: Pod
metadata:

name: example-pod
labels:

app: example
spec:

containers:
- name: example-container

image: nginx:latest
ports:
- containerPort: 80
env:
- name: EXAMPLE_ENV_VAR

value: "example-value"
resources:

requests:
memory: "64Mi"
cpu: "250m"

limits:
memory: "128Mi"
cpu: "500m"

volumeMounts:
- name: example-volume

mountPath: /example/path
volumes:
- name: example-volume

configMap:
name: example-config

Listing 6: Kubernetes Pod definition for example-container.

3.4.2.1 Struct Creation and Encoding

The initial stage in the lifecycle of Kubernetes objects within the system involves creating

and serializing Go structs. The focus is on struct integrity and alignment with Kubernetes

API specifications.

• Structure Initialization Structures coming from the fuzzer should reflect the schema

Kubernetes objects expect (D). This includes fields representing metadata, specs,

and statuses essential for Kubernetes operations. The incoming Protocol Buffers

data is in hex format and needs to be de-serialized into Go structures. In any fuzzing

25

3. DESIGN OF KUBERNETES ERRONEOUS OBJECT GENERATION

Figure 3.4: Protobuf tree structure of converted Pod yaml.

input, the incoming fuzzing data should be de-serialized or converted to the Go

structures, which Kubernetes can take as input, as shown in Figure 3.5.

3.4.2.2 Error Handling and Logging

Effective error handling and logging are required in the fuzzer, where the complexity and

scale can lead to numerous failure points. The unmarshaler is designed to handle and log

errors. Which are logged for further use in coverage and error analysis (G).

• Error Detection and Recovery Errors during unmarshaling should be detected

promptly. The system should be designed to recover gracefully from such errors,

ensuring continuous service availability and reliability { NRF3 } .

• Logging Mechanisms All errors should be logged with detailed contextual infor-

mation, including timestamps, the function names where errors occurred, and the

nature of the error.

26

3.4 Components of the Erroneous Object Generation Flow

Yaml or
Json Protobuf

Kubernetes
Go

Structures

Kubeneretes
PKG tests

Deserialize

Deserialize Deserialize

Figure 3.5: Protobuf to Structs, Structs to Protobuf, Yaml to Protobuf, Deserializer flow.

3.4.3 Design of the Kubelet API Calls

This section explores the final step in the flow where Kubernetes structures, now correctly

initialized and transformed into Go structs (D), interact directly with the kubelet’s APIs

(MC3.2). This interaction is important as it directly impacts the kubelet’s ability to

manage node resources and handle pods effectively.

The Main rationale for choosing these design choices is to evaluate if the error state

creation can be reached faster using specific input handling techniques that satisfy the

mock kubelet API’s requirements. In Structure-Aware fuzzing, reaching specific paths

might take longer, which means more computing time. The design hypothesis here is to

verify and evaluate if that is true.

3.4.3.1 Integration with Kubelet Functions

The interaction between the Go structs (D) and kubelet APIs (E) involves invoking

kubelet functions using the generated and unmarshaled Go structs. These calls simulate

real-world operational conditions to validate the kubelet’s responses to varied and poten-

tially erroneous inputs.

27

3. DESIGN OF KUBERNETES ERRONEOUS OBJECT GENERATION

• Mock Integration: Utilizing mock kubelet APIs allows for controlled testing with-

out needing an active Kubernetes cluster. This integration is important for testing

the kubelet’s behavior under simulated conditions that will not be feasible in a live

environment.

• API Function Calls: Specific kubelet functions are targeted based on the testing

requirements. These include managing pod lifecycle events, handling node resource

allocations, and responding to cluster state changes.

3.4.3.2 Handling of Erroneous Inputs

The design must ensure that the kubelet can gracefully handle erroneous inputs. This

involves validating the kubelet’s error-handling capabilities to maintain stability and reli-

ability.

• Error Simulation: By passing erroneous data structures to the kubelet APIs, the

system can validate the error handling protocols of the kubelet, ensuring it responds

appropriately without leading to system crashes or unexpected behavior.

• Response Validation: Responses from kubelet APIs are captured and analyzed

to ensure they meet the expected outcomes, whether handling errors correctly or

managing resources under fault conditions.

3.4.3.3 Feedback Loop for Continuous Improvement

The integration with kubelet API calls is not just about testing but also about improving.

The corpus from these fuzzers feeds back into the fuzzing and mutation process, enhancing

the error cases’ effectiveness (MC3.3).

• Coverage and Error Analysis: Information from the input executions, such as

coverage data and error logs, is used to refine the fuzzing process, aiming to cover

more code paths and discover new potential errors.

• Distributed Feedback Corupus: The fuzzer runs in a distributed pattern, and

the input corpus might differ from each instance. To maintain a consistent corpus

across the instances, we sync the input corpus between the instances { NFR5 }.

28

3.5 Summary

3.5 Summary

In this chapter, we address RQ1 by proposing a design for a Structure-aware fuzzer sys-

tem for generating erroneous Kubernetes objects, by targeting the Kubelet component.

We identify the key considerations for generating error objects (MC3.1) and propose a

fuzzer design to create structured inputs for Kubernetes APIs that satisfy the { FR1 }. A

structured input generator is built using libprotobuf-mutator to handle Kubernetes’ nested

and complex objects (MC3.2). The coverage-directed fuzzing system is used in code ex-

ploration using feedback loops and a global input corpus (MC3.3) which satisfies the {

FR3 }. libprotobuf-mutator is configurable for custom resources and uses the llvm custom

mutator, which efficiently fuzzes the inputs. Information during a panic or error is stored

and exits safely. There is validation for the inputs to avoid the nil pointer or panics by

which only valid structure inputs are passed to the Kubernetes APIs, satisfying the { FR2

}.

29

4

Implementation of Structure Aware
Fuzzer with Kubernetes

Main Contributions

• Main Contribution 4.1 (MC4.1): We integrate effective fuzzing of struc-
tured data (protobuf messages) for Kubernetes components.

• Main Contribution 4.2 (MC4.2): We handle incoming mutated protobuf
data, encapsulating and prefixing it with encoding headers and transforming
it into Go Structs to simulate real Kubernetes scenarios.

• Main Contribution 4.3 (MC4.3): We integrate error handling and logging
to capture execution errors (e.g., panics) with metadata.

This section outlines the development of a struct-aware fuzzer that integrates Google’s

libFuzzer with the libprotobuf-mutator to efficiently test programs that process structured

data, specifically protobuf messages (MC4.1). The fuzzer aims to uncover errors or defects

by subjecting the target software to varied and valid erroneous configurations. Figure 4.1

represents the overall flow of the fuzzer implementation.

4.1 Implementation of Structure-Aware Fuzzer

Initialization and Configuration The implementation commences with including the

necessary libraries:

• Fuzzer: libprotobuf-mutator mutates protobuf messages, and libfuzzer_macro pro-

vides the macros required to define the fuzzing behavior.

• Protobuf definitions: Protobuf headers *.pb.h contains the generated class definitions

30

4.1 Implementation of Structure-Aware Fuzzer

Initializer
Libprotobuf-mutator

+ libfuzzer

Kuberenetes
generated

protobuf Trees

Go extern C
function

Protobuf
Unmarshal

Go structs for
kubelet

Mock Kubelet

Function API Call

Error or Pod or
Node Status

Logfile

Input
corpus

Fuzzer Unmarshaler Kubelet API calls

A

B

D

C

E

F

G

H

I

J

K

Figure 4.1: Implementation of erroneous object generation flow.

from the protobuf specifications. which includes structured data to be fuzzed. These

protobuf files are compiled from already existing Kubernetes components. This fulfills

the need to define the structures for the protobuf mutator to understand what to

fuzz.

• There are two header files: The protobuf header files and Go Exported C headers.

These contain definitions and implementations explicitly used for the fuzzing process,

like hooks for data manipulation and debugging tools.

DEFINE_PROTO_FUZZER : The fuzzer’s entry point (A) is defined using a

macro from libprotobuf-mutator (B), which integrates seamlessly with libFuzzer. This

macro from libprotobuf-mutator defines the main function that libFuzzer will invoke. This

function:

• Registers a custom post-processor only once (controlled by hasRegister), which could

modify the protobuf data after each mutation, depending on certain conditions or

targeted fuzzing strategies, as shown in Figure 4.2.

Input Corpus : Corpus provides a set of well-formed inputs that mutator can use as a

base to generate new input cases (D). The input cases are more meaningful because they

are based on valide inputs rather than random data. Having realistic inputs, the mutator

31

4. IMPLEMENTATION OF STRUCTURE AWARE FUZZER WITH
KUBERNETES

mutation 1

str help

num 123

original field

str hello

num 123

mutation 2

str help

num 456

msg.proto

message Msg {
 string str = 1;
 int32 num = 2;
 }

Figure 4.2: Protobuf struct mutation.

can modify specific part of structured inputs. libprotobuf-mutator can generate mutations

that explore the different paths in code more effectively. A good input corpus will generate

fewer invalid or malformed inputs that Kubernetes components reject immediately.

4.2 Implementation of Unmarshaler

In the context of our struct-aware fuzzer, the decoding and creation of structured data are

vital for generating error objects that are correct and meaningful, thus reflecting realistic

scenarios encountered in Kubernetes environments.

Kubelet Binaries : The extern "C" (E) keyword in C/C++ is typically used to

indicate the function that should have C linkage. If we want to use libraries such as

libProtobuf-mutator on the Kubelet, there should be a link between the go and C/C++.

We use Go’s c-shared build mode to compile the Go code as an archive file (Groups of

objects or static libraries that are also input into the linker). The exported Go functions

are callable from C++ because Go creates a compatible interface with C through the

export directive. C++ uses the archive object file and the generated header to call Go

functions, linking the Go-generated library at compile time. This would allow C++ to call

32

4.2 Implementation of Unmarshaler

Go functions to perform specific tasks while still utilizing the core fuzzing capabilities of

libprotobuf-mutator.

4.2.1 Struct Creation and Decoding

As the fuzzer generates the data, it is presented in hex format, which is the protobuf

format. However, this cannot be directly translated into Go structs, where Kubernetes

components would understand the data (MC4.2). A few steps are required to convert the

protobuf hex data into Go structs. Here are the steps that need to be followed:

Encoding (Marshaling) : Initially, Incoming protobuf format Pod hex data is mar-

shaled into its wire format by converting the Pod object into a byte slice, employing pro-

tobuf for efficient serialization. This byte slice represents the object’s serialized form.

Preparing Mutated Data : The raw data from the fuzzer(encoded byte slice) is encap-

sulated in a runtime.Unknown object, simulating the reception and handling of unknown

objects within Kubernetes. In this context, the raw byte data is encapsulated within a

runtime.Unknown object, accompanied by appropriate type metadata. The encapsulated

object is then re-marshaled into a byte slice (wire), simulating the receiving of unknown

or malformed objects. Header bytes must be used to entirely unmarshal the protobuf data

(F) according to the Kubernetes requirements. The incoming buffer has no headers and

raw mutated protobuf data from libprotobuf-mutator. The header bytes are added to the

incoming wire as below:

wire = append([]byte{0x6b, 0x38, 0x73, 0x00}, wire...)

protoEncodingPrefix is a magic number for an encoded protobuf message on this se-

rializer. All proto messages serialized by this schema will be preceded by the bytes

0x6b 0x38 0x73, with the fourth byte reserved for the encoding style. The only en-

coding style defined is 0x00, meaning the rest of the byte stream is a message of type

k8s.io.kubernetes.pkg.runtime.Unknown (proto2).

Struct-Aware Fuzzing and Test Cases : The mutated data is incorporated into test

cases to assess the unmarshaling logic. Each test case specifies the expected object type

and the mutated data (wire). The unmarshaling process is then evaluated against these

cases to ensure validation.

33

4. IMPLEMENTATION OF STRUCTURE AWARE FUZZER WITH
KUBERNETES

Decoding and Validation : The protobuf-encoded data undergoes decoding, and any

resultant errors are logged. The protobuf-encoded data is transformed back into a Pod ob-

ject during the decoding process. Successful decoding operations validate the unmarshaling

logic while errors are highlighted.

4.3 Error Handling and Logging

Error handling and logging are necessary to identify and rectify issues during fuzzing. Our

implementation includes mechanisms to capture and log errors, including panics, ensuring

thorough post-analysis MC4.3.

Capturing Panics : A deferred function captures any panics during execution, ensur-

ing these events are logged appropriately. This deferred function leverages the recover

function to intercept panics. The extracted error message is used to exclude nil pointer

dereference errors, which are non-actionable, thereby maintaining the relevance and utility

of the logged data.

Logging Errors : Errors captured during execution are logged with detailed informa-

tion, including timestamps, error types, error messages, and function names. The log

capture function constructs a log entry encapsulating the error type, message, function

name, and timestamp. This logging facilitates analysis and identification.

logEntry := ErrorLog{
Timestamp: time.Now().Format(time.RFC3339),
ErrorType: "Unmarshal Error",
ErrorMessage: err.Error(),
FunctionName: "UnmarshalPod",

}

4.4 Summary

This chapter discusses the implementation of a Structure-aware fuzzer. The fuzzer is

designed to uncover errors in Kubernetes components by generating and mutating struc-

tured protobuf data. (MC4.1) involves integrating the fuzzing of structured data (protobuf

messages) into Kubernetes, enabling the fuzzer to handle complex object hierarchies and

links Kubernetes components to the fuzzing process through protobuf definitions and Go-

exported C headers. (MC4.2) introduces the handling of mutated protobuf data, which

is encapsulated and transformed into byte slices to simulate real Kubernetes scenarios.

34

4.4 Summary

(MC4.3) implements error handling and logging mechanisms to capture execution errors

such as panics and to document relevant metadata for post-mortem analysis.

35

5

Evaluation of the Erroneous Objects
Generated

Main Findings

• Main Finding 5.1 (MF5.1): Structure-aware fuzzing significantly improves
code coverage and explores more execution paths than String-based input
fuzzing.

• Main Finding 5.2 (MF5.2): The Structure-aware fuzzer processes a larger
and more complex input corpus, leading to broader input exploration and
slower execution speeds.

• Main Finding 5.3 (MF5.3): Specific errors are highly reproducible, indi-
cating consistent issues in particular functions, while others require refinement
due to inconsistent reproducibility.

• Main Finding 5.4 (MF5.4): Feedback-driven corpus generation leads to
faster and more consistent coverage growth, discovering additional code paths
in less time.

• Main Finding 5.5 (MF5.5): Long runtimes (3-5 days) are necessary to
uncover deeper bugs, with functions like HandleMemExceeded running for
almost 40 hours.

In this part of the thesis, we have discussed analyzing discovered errors using Structure-

aware fuzzing on Kubernetes. In this chapter, we will evaluate the effectiveness and effi-

ciency of our design and implementation by answering the relevant research questions.

Due to no public availability of the Structure-aware fuzzing benchmark or coverage ap-

proaches, particularly for this problem statement, as well as due to difficulty in comparison

of the fuzzing approaches as mentioned at (36) by Klees et al., We focus evaluation mainly

on error objects and newly discovered code coverage paths created during the Structure-

36

5.1 Abstract Syntax Tree for Static Analysis

aware fuzzing approach. We will evaluate if this methodology is capable of producing

the error objects. We will also measure the Structure-aware fuzzer with the String-based

fuzzer, which only mutates the input values instead of structures.

The fuzzer efficiency is measured based on the number of distinct bugs it can find (36).

If a Fuzzer finds more bugs than the baseline, then we can say it is more effective. In our

case, the fuzzer efficiency can be measured on several error objects created during the run.

The baseline is the code coverage of the String-based input fuzzer.

5.1 Abstract Syntax Tree for Static Analysis

We use Abstract Syntax Tree(AST) to extract the relevant information on errors and log-

ging functions. The hierarchical nature of the Abstract Syntax Tree (AST) allows us to

inspect nested function calls, arguments, and expressions, which is essential for identifying

logging patterns such as klog.V(...), InfoS(...), fmt.Errorf, log.ErrorS and others. The Go

Parser generates an AST representation of the Go source code. This AST is a hierarchical

tree structure where each node represents a syntactic element such as function calls, vari-

able declarations, etc. The main parameters we gather are function name, position, and

error strings, and we store them in a JSON file.

• Function Name: The name of the logging function (e.g., InfoS, ErrorS, Errorf).

• Position: The location in the source file where the logging function call occurs. This

is important for tracking log messages exactly back to the lines of code generated,

providing context for the log entry.

• Error Strings: The message or format string with the logging call. This is particu-

larly important for structured logging systems, such as klog, where the log messages

are often key-value pairs.

Each of these patterns requires a different approach to extraction. By inspecting the

AST, we can identify not only the top-level function call (e.g., InfoS, ErrorS) but also its

nested components (e.g., V(...) for log levels or Errorf format strings). This allows us

to understand how logging is handled throughout the codebase. It identifies the specific

logging functions by traversing the AST and checking the structure of each function call.

This allows us to track the position of tokens in the file and allows the static analysis on

fuzzer logs to find precisely the location of function calls within the source file.

37

5. EVALUATION OF THE ERRONEOUS OBJECTS GENERATED

5.2 Expremiental Setup

The Experimental system includes three compute nodes that run the fuzzing workload

based on the available hardware resources. This architecture in Figure 5.1 is ideal for LPM

fuzzers such as LLVM’s LibFuzzer, which benefits from parallel processing and high I/O

throughput.

The corpus is central to this Experimental setup, and it creates a collection of error input

cases that the fuzzer mutates and executes to discover new code paths or vulnerabilities.

As new inputs are found, the corpus is dynamically updated during the fuzzing process.

Each machine processes a portion of the corpus based on the workload distribution. The

setup periodically syncs results with the central repository. This syncing period is done

manually via the rsync tool (37) in Linux. This ensures that new, exciting error cases are

shared across all compute nodes, promoting faster discovery of edge cases.

Table 5.1: Technical specifications of the experiment infrastructure.

Host CPU Cores RAM Storage Instances
1 Intel Xeon vCPU 16 32GB 320GB SATA SSD 1
2 Intel Xeon vCPU 8 16GB 120GB SATA SSD 3
3 AMD Ryzen 9 7800x3d 12 64GB 2TB NVMe SSD 1

Corpus

Compute
Machine 1

Machine 3

1 X Intel vCPU 16
Cores
32 GB DDR4 Ram
320 GB SATA SSD

Compute
Machine 2

3 X Intel vCPU 8
Cores
3 X 16 GB DDR4
Ram
3 X 120 GB SATA
SSD

Compute
Machine 3

1 X Amd Ryzen 9
7800x3d
1 X 64 GB DDR5
Ram
2 TB NVMe SSD

Figure 5.1: Expremiental setup to evaluate the fuzzer with corpus sharing.

38

5.3 Evaluation

5.2.1 Timeouts during runtime

One of the main factors evaluating the fuzzer on a particular target is the time. These

generally range from hours to days and weeks. The recent papers that use LAVA as the

benchmark choose 5 hours (38). In this paper (39) by Böhme et al., AFLFasts’s evaluation

with the AFL until 6 hours wasn’t able to find bugs. But running it for longer, which is

almost for the next 20 hours, 40 bugs were found. One of the main reasons the shorter

runtimes are considered is because of computing power and hardware resources. Despite

having fewer resources, we will have longer runtimes (3-5 days) only if the function does

not quit because of Out-of-Memory and Slow Unit issues. If a function cannot run for

more than 4-5 hours, we will stop the run on that function.

5.2.2 Key Elements Used in the Evaluation

• cov: This refers to the number of code coverage units (e.g., lines, blocks, or edges)

that have been executed. A higher number indicates a broader exploration of the

codebase.

• ft: refers to the number of features or function calls executed during the fuzzing

process.

• corp: This shows the corpus size and the set of test cases libFuzzer uses. The corpus

size is the number of files or inputs, followed by their total size in kilobytes.

• lim: This indicates the execution limit for each test case, typically measured in the

number of instructions or some unit of time.

• exec/s: This is the number of executions per second, reflecting the speed of the

fuzzing process.

• rss: This stands for Resident Set Size, which measures the memory used.

• L: Length of the inputs being tested.

5.3 Evaluation

In this section, We initially discuss comparing the String-based input fuzzer and the

Structure-aware fuzzer. Then, we verify the status of error objects. Every error object

found after fuzzing would be rerun and reported on the particular input function.

39

5. EVALUATION OF THE ERRONEOUS OBJECTS GENERATED

Initializer libFuzzer Byte
Conversion Mock Kubernetes

Error or Pod or
Node Status

Logfile

Fuzzer Deserializer Kubernetes API calls

AST Scan

Corpus

Figure 5.2: String-based input fuzzer for Kubernetes components.

5.3.1 Coverage Information of String-based Input Fuzzer and Structure-
Aware Fuzzer

To compare the performance of the Structure-Aware Fuzzer, we need to establish a baseline.

So, we choose the baseline as a String-based input fuzzer. String-based input fuzzers have

a similar flow to Structure-aware fuzzers, but there are differences in input creation and

deserialization. Input is created using the libFuzzer only, and the incoming bytes are

converted as Strings and Integers depending on the kubelet component requirement. The

String-based input fuzzer design is shown in Figure 5.2. Instead of passing structures, we

pass only inputs mutated to the Kubernetes components.

When we compare the performance of the two fuzzers, the String-based input fuzzer

on Table 5.2 and Structure-aware fuzzer on Table 5.3, significant differences are found.

The Structure-aware fuzzer consistently achieves higher code coverage and processes more

function calls (MF5.1). For instance, it achieves coverage of 13,008 for HandleMemEx-

ceeded compared to 86 in the String-based input fuzzer. This difference underscores the

Structure-aware fuzzer’s ability to explore various code paths.

It also tested a larger input corpus, contributing to its more extensive fuzzing process

(MF5.2). Corpus sizes like 3,564Kb were compared to the smaller and simpler corpus of

28b, which the String-based input fuzzer tested. However, this increased thoroughness

came at the cost of slower execution speeds. The functions like SyncPodsDoesNotSet-

PodsThatDidNotRun -TooLongToFailed where the execution rate dropped from 203

40

5.3 Evaluation

exec/s in the String-based input fuzzer to 87 exec/s in the Structure-aware fuzzer.

The Structure-aware fuzzer demonstrated efficient memory usage across most functions.

These results suggest that the String-based input fuzzer operates at higher speeds. One

notable difference across both fuzzers is the function HandlePodRemovesWhenSource-

sAreReady, which exhibits high coverage but low execution speed and high memory con-

sumption in the Structure-aware fuzzer but very high execution speed and lower memory

usage in the String-based input fuzzer, indicating that this particular function is resource-

intensive and complex. The Structure-aware fuzzer offers more extensive code coverage

and input diversity, making it more suitable for in-depth error-generation scenarios.

5.3.2 Overview of Errors Objects Generated

The data analyzed includes various Error cases, each evaluated across multiple error met-

rics, including crashes (errors), slow units, false positives, reproducibility, coverage exis-

tence, and nil pointer exceptions. This analysis aims to determine the contribution of these

factors to each Error Object Generated’s overall performance and reliability.

The Table 5.3 represents the intensity of each error metric across the different error

objects generated. The separation of crashes and slow units, along with the division

by other factors like false positives, reproducibility, coverage existence, and nil pointer

exceptions, yielded several key observations:

Certain Kubelet functions, such as DoesNotDeletePodDirsIfContainerIsRunning,

experience many crashes and slow units. This highlights potential performance bottlenecks,

where crashes and delays concurrently impact system reliability. In contrast, Kubelet func-

tions such as SyncPodsDoesNotSetPodsThatDidNotRunTooLong have negligible

crashes and slow units, indicating that these inputs are more efficient and stable.

Reproducibility : Reproducibility in fuzzing refers to the ability to consistently repro-

duce the conditions that lead to a specific crash or bug in a target application. In our case,

the error input leads to a specific crash. Reproducibility varied significantly across errors

and slow units generated. Specific errors demonstrated high reproducibility rates, while

others have none (MF5.3). This indicates that some errors consistently produced the same

results under repeated conditions. There are some error cases found where the functions

exited without any errors.

41

5. EVALUATION OF THE ERRONEOUS OBJECTS GENERATED

Function Name Cov Ft Corpus Limit Exec/s Rss
SyncPodsDoesNotSet-
PodsThatDidNotRunTooLong-
ToFailed

86 109 28b 4,096 203 1260

DeleteOrphanedMirrorPods 86 109 24b 4,096 155 1931
DeletePodDirsForDeletedPods 86 109 24b 4,096 153 1904
DispatchWorkOfActivePod 86 109 24b 4,096 153 1798
DispatchWorkOfCompletedPod 86 109 24b 4,096 153 1831
GetPodsToSync 86 109 24b 4,096 153 1827
HandleHostNameConflicts 86 109 24b 4,096 153 1830
HandleMemExceeded 86 109 24b 4,096 154 1947
HandleNodeSelectorBasedOnOS 86 109 24b 4,096 154 1929
HandlePodAdditionsInvokes-
PodAdmitHandlers

86 109 24b 4,096 191 1929

HandlePodRemovesWhen-
SourcesAreReady

86 109 13b 4,096 34,065 548

SyncPodsSetStatusToFailed-
ForPodsThatRunTooLong

86 109 24b 4,096 152 1918

CreateMirrorPod 86 109 24b 4,096 30,706 544
DoesNotDeletePodDirsFor-
TerminatedPods

86 109 24b 4,096 143 1294

DoesNotDeletePodDirsIfCon-
tainerIsRunning

86 109 24b 4,096 153 1904

FilterOutInactivePods 86 109 13b 4,096 129 1280
GenerateAPIPodStatusWith-
DifferentRestartPolicies

86 109 24b 4,096 151 1921

GenerateAPIPodStatusWith-
ReasonCache

86 109 24b 4,096 151 1983

GenerateAPIPodStatusWith-
SortedContainers

86 109 24b 4,096 151 2001

HandlePluginResources 86 109 24b 4,096 153 1988
HandlePortConflicts 86 109 24b 4,096 132 1271
PurgingObsoleteStatusMap-
Entries

86 109 24b 4,096 154 1936

ValidateContainerLogStatus 86 109 24b 4,096 195 134

Table 5.2: String-based input fuzzer max coverage and performance output on the Kubelet.

42

5.3 Evaluation

Function Name Cov Ft Corpus Limit Exec/s Rss
SyncPodsDoesNotSet-
PodsThatDidNotRunTooLong-
ToFailed

11,552 44,098 3,564 4,096 87 932

DeleteOrphanedMirrorPods 11,462 33,705 1,099 4,096 187 598

DeletePodDirsForDeletedPods 9,770 18,777 1,170 4,096 4,904 501

DispatchWorkOfActivePod 11,552 49,582 293 4,096 4,904 1,172

DispatchWorkOfCompletedPod 11,552 42,460 3,236 4,096 80 767

GetPodsToSync 11,552 48,524 4,485 4,096 27 1,891

HandleHostNameConflicts 7,226 13,041 628 4,096 961 369

HandleMemExceeded 13,008 47,900 3,884 4,096 65 961

HandleNodeSelectorBasedOnOS 13,008 47,900 5,924 4,096 454 1,028

HandlePodAdditionsInvokes-
PodAdmitHandlers

13,008 49,437 4,449 4,096 122 1,782

HandlePodRemovesWhen-
SourcesAreReady

11,521 33,942 1,896 4,096 108 545

SyncPodsSetStatusToFailed-
ForPodsThatRunTooLong

11,351 27,011 1,506 4,096 157 479

CreateMirrorPod 4,927 6,612 318 4,096 7 485

DoesNotDeletePodDirsFor-
TerminatedPods

8,103 12,350 700 4,096 4 461

DoesNotDeletePodDirsIfCon-
tainerIsRunning

10,256 19,487 1,158 4,096 2 494

FilterOutInactivePods 11,552 46,912 4,045 4,096 108 1,430

GenerateAPIPodStatusWith-
DifferentRestartPolicies

9,526 16,065 998 4,096 2 522

GenerateAPIPodStatusWith-
ReasonCache

11,552 47,650 4,107 4,096 137 1,312

GenerateAPIPodStatusWith-
SortedContainers

11,552 47,771 4,115 4,096 137 1,332

HandlePluginResources 7,397 10,985 418 4,096 341 182

HandlePortConflicts 10,231 16,946 735 4,096 195 390

PurgingObsoleteStatusMap-
Entries

2,462 3,010 114 4,096 170 409

ValidateContainerLogStatus 11,552 48,201 4,174 4,096 136 1,307

Table 5.3: Structure-aware fuzzer max coverage and performance output on the Kubelet.

43

5. EVALUATION OF THE ERRONEOUS OBJECTS GENERATED

Errors+Crashes Slow Units False Positives Reproducible Coverage Exists Nil Pointer

Factors

DoesNotDeletePodDirsIfContainerIsRunning
 SyncPodsDoesNotSet-

 PodsThatDidNotRunTooLong-
 ToFailed

DeleteOrphanedMirrorPods

DeletePodDirsForDeletedPods

DispatchWorkOfActivePod

GetPodsToSync

HandleMemExceeded

HandleNodeSelectorBasedOnOS
HandlePodAdditionsInvokes-

 PodAdmitHandlers
 HandlePodRemovesWhen-

 SourcesAreReady
 SyncPodsSetStatusToFailedForPodsThatRunTooLong

CreateMirrorPod

DoesNotDeletePodDirsForTerminatedPods

DoesNotDeletePodDirsIfContainerIsRunning

FilterOutInactivePods

GenerateAPIPodStatusWithDifferentRestartPolicies

GenerateAPIPodStatusWithReasonCache

GenerateAPIPodStatusWithSortedContainers

HandlePluginResources

HandlePortConflicts

PurgingObsoleteStatusMapEntries

ValidateContainerLogStatus

Ku
be

le
t

Fu
nc

ti
on

s

1.00 4.00 0.00 5.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 3.00 0.00 0.00 0.00 0.00

1.00 1.00 0.00 2.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00

4.00 4.00 0.00 2.00 2.00 0.00

4.00 0.00 0.00 4.00 0.00 4.00

7.00 0.00 4.00 4.00 4.00 0.00

7.00 0.00 4.00 4.00 4.00 0.00

1.00 0.00 0.00 1.00 0.00 0.00

2.00 4.00 1.00 5.00 1.00 0.00

0.00 2.00 0.00 2.00 0.00 0.00

0.00 5.00 1.00 5.00 0.00 0.00

0.00 2.00 2.00 2.00 0.00 0.00

0.00 4.00 3.00 4.00 0.00 0.00

0.00 2.00 2.00 2.00 0.00 0.00

0.00 2.00 2.00 2.00 0.00 0.00

0.00 2.00 2.00 2.00 0.00 0.00

4.00 2.00 1.00 6.00 1.00 0.00

1.00 0.00 0.00 1.00 0.00 0.00

0.00 1.00 1.00 1.00 0.00 0.00

Figure 5.3: Metrics of the error objects generated.

False Positives : Across most Kubelet functions, false positives are minimal. However,

the few instances of false positives may have led to misleading results in overall fuzzer

performance, potentially requiring additional validation.

Coverage Exists and Nil Pointer : The factors of coverage existence and nil pointer

exceptions are observed to be more uniform across, with relatively low values. This suggests

that, while they are present, they do not contribute as significantly to failures compared

to crashes, slow units, and reproducibility issues.

Timeouts During Runtime : One of the examples of early execution termination in

our runtime is TestHandleHostNameConflicts. The function frequently terminates with

slow units and OoM issues after 2.5 hours, as shown in Figure 5.4. TestGetPodsToSync

could run for more than 30 hours, as shown in Figure 5.4. Still, a few instances(which is

the parallel workloads) in the fuzzer workload quit early because of the slow unit and OoM

cases (MF5.5).

• Key Observations :

44

5.4 Impact of Feeback Driven Corpus Generation

0 5 10 15 20 25 30
Time (hours)

6000

7000

8000

9000

10000

11000

Co
ve

ra
ge

TestGetPodsToSync

Fuzz Instances
fuzz-1
fuzz-2
fuzz-3
fuzz-4

2.0 2.2 2.4 2.6
Time (hours)

2000

3000

4000

5000

6000

7000

Co
ve

ra
ge

TestHandleHostNameConflicts
Fuzz Instances

fuzz-0
fuzz-1
fuzz-4

Figure 5.4: HandleHostNameConflicts and GetPodsToSync feature coverage on parallel
workloads.

– DoesNotDeletePodDirsIfContainerIsRunning: This function case shows

a high rate of both crashes and slow units, making it one of the most interesting

in the fuzzing process. Despite having no false positives or nil pointer excep-

tions, the reproducibility factor is moderately high, suggesting that the issues

identified are consistent and reproducible across different runs.

– DeletePodDirsForDeletedPods: This function case has fewer crashes but

is marked by a moderate number of slow units. The lack of false positives

and other errors indicated that while the function may be slow, it is relatively

accurate and reliable.

– DeleteOrphanedMirrorPods: With low values across all metrics, this func-

tion case shows strong stability compared to other functions.

5.4 Impact of Feeback Driven Corpus Generation

We have taken a sample of three functions to measure the effectiveness of feedback-based

corpus generation. The following functions coverage data is taken for 10 hours TestHandle-

PluginResources, TestHandlePodAdditionsInvokesPodAdmitHandlers, and TestFilterOutI-

nactivePods. The first graph in Figure 5.5 represents the data for fuzzing data without

the corpus, and the second graph in Figure 5.6 represents the data with a feedback-based

corpus.

There is faster and more consistent growth in coverage over the iterations for feedback

with corpus. This indicates that the fuzzer has taken advantage of the feedback to focus

45

5. EVALUATION OF THE ERRONEOUS OBJECTS GENERATED

0 1 2 3 4 5 6 7 8 9 1011
Time (hours)

6000

7000

8000

9000

10000

Co
ve

ra
ge

TestFilterOutInactivePods

Fuzzer instance
fuzz-4
fuzz-2
fuzz-0

0 1 2 3 4 5 6 7 8 9 1011
Time (hours)

6000

7000

8000

9000

10000

11000

Co
ve

ra
ge

TestHandlePluginResources

Fuzzer instance
fuzz-4
fuzz-2
fuzz-1
fuzz-3

0 1 2 3 4 5 6 7 8 9 1011
Time (hours)

6000

7000

8000

9000

10000

11000

12000

Co
ve

ra
ge

TestHandlePodAdditionsInvokesPodAdmitHandlers

Fuzzer instance
fuzz-4
fuzz-1
fuzz-2

Figure 5.5: Feature coverage on parallel workloads without corpus feedback.

0.0 2.5 5.0 7.5 10.0
Time (hours)

2000

4000

6000

8000

10000

Co
ve

ra
ge

TestFilterOutInactivePods

Fuzzer instance
fuzz-0
fuzz-1
fuzz-2
fuzz-3
fuzz-4

0.0 2.5 5.0 7.5 10.0
Time (hours)

0

2000

4000

6000

8000

10000

12000

Co
ve

ra
ge

TestHandlePluginResources

Fuzzer instance
fuzz-0
fuzz-1
fuzz-3
fuzz-4

0.0 2.5 5.0 7.5 10.0
Time (hours)

0

2000

4000

6000

8000

10000

12000

Co
ve

ra
ge

TestHandlePodAdditionsInvokesPodAdmitHandlers

Fuzzer instance
fuzz-0
fuzz-1
fuzz-2
fuzz-4

Figure 5.6: Feature coverage on parallel workloads with corpus feedback.

on and create inputs that would cover a greater number of code paths, thereby achieving

more coverage within a shorter amount of time. Without Corpus, The fuzzer without a

feedback-driven corpus shows slower coverage growth, indicating that the fuzzer is likely

exploring many redundant paths or failing to focus on areas of the code that have yet to

be explored (MF5.4). The mutation strategy is guided by feedback from prior iterations,

which means the inputs evolve based on their success in triggering new code paths. This

leads to an exponential increase in coverage, as indicated by the growth curve in Figure

5.7. The fuzzing process is more random without feedback corpus. The mutations might

not be suitably directed to the areas of the code that should be investigated, leading to

reduced efficiency in the search for new paths.

46

5.5 Performance of AST Static Analyzer

0 2 4 6 8 10 12
Iteration (hours)

0

2000

4000

6000

8000

10000

12000
Co

ve
ra

ge
Corpus Strategy

With Corpus
Without Corpus

Figure 5.7: Coverage growth of 3 sample functions mentioned over time in hours (with vs
without corpus).

5.5 Performance of AST Static Analyzer

The Static Analyzer starts by reading a JSON file containing log entries extracted from the

AST, including function names, positions, and error strings. These AST entries form the

foundation for error detection. The program then recursively scans directories to collect

.log files, indexing each file using a Bleve search index (40). To improve efficiency, a

worker pool is utilized where each worker processes and indexes a log file concurrently.

The contents of each log file are indexed in batches, focusing on optimizing the indexing

process. After indexing, the program searches the index for approximate matches (using

fuzzy search) between the log lines and error strings from the AST. The results are written

to an output file, identifying specific log lines that match or closely resemble the errors

extracted from the AST. The Table 5.4 compares Time Taken to index against the log file

size and many parallel workloads run on host machine three in Table 5.1.

If an error is detected, it logs the match along with details like the function name,

position in the source file, and the log file path. A unique detection key is created for

each error string and position to avoid duplicate logging, ensuring that the same error isn’t

logged multiple times for the same subfolder.

47

5. EVALUATION OF THE ERRONEOUS OBJECTS GENERATED

Table 5.4: Comparison of time taken to index against the LogFile size of each fuzzed com-
ponent on 10 workers.
Function Name Indexing Time

in Min
Log Size in

MB
Number of

Fuzzers
(Mean) (Mean)

DoesNotDeletePodDirsIf
ContainerIsRunning 20.19 1,503 6
SyncPodsDoesNotSetPods
ThatDidNotRunTooLongToFailed 6.11 81.63 6
SyncPodsSetStatusToFailed
ForPodsThatRunTooLong 6.55 960 4
DeleteOrphanedMirrorPods 5.53 23.69 4
DeletePodDirsForDeletedPods 0.91 3.98 6
DispatchWorkOfCompletedPod 10.70 247 6
DoesNotDeletePodDirsIf
ContainerIsRunning 2.22 62 4
DoesNotDeletePodDirs
ForTerminatedPods 3.75 67 4
FilterOutInactivePods 23.68 2,920 4
GetPodsToSync 22.11 3,680 5
HandleHostNameConflicts 12.14 540 4
HandleMemExceeded 13.44 370 4
HandlePluginResources 13.12 360 4
HandlePodAdditions
InvokesPodAdmitHandlers 12.96 360 4
PurgingObsoleteStatus
MapEntries 13.82 1,500 4
ValidateContainerLogStatus 10.33 423 4
PodResourceAllocationReset 3.71 140 4
GenerateAPIPodStatusWith
DifferentRestartPolicies 3.73 44 4
GenerateAPIPodStatus
WithReasonCache 22.27 2,650 4
GenerateAPIPodStatus
WithSortedContainers 3.06 139 4
HandleNodeSelectorBasedOnOS 18.86 957 4

48

6

Conclustion And Future Work

This chapter summarizes our main findings and contributions, associates them with the

research questions they answer, and discusses future work.

6.1 Summary of Answers to main research questions

RQ1) What fuzzing design choices enable generating erroneous objects that

target error modes in Kubernetes?

In Chapter 3, We proposed a fuzzer design for generating Error objects for Kubernetes

objects. We go through different requirements that need to be satisfied to generate suitable

error objects for Kubernetes to create errors. We use the existing Structure-aware fuzzers

to inject the data into the Kubernetes APIs. Structure-aware fuzzing ensures that gener-

ated erroneous inputs conform to Kubernetes’ schema while triggering meaningful errors.

Nested structures like Pods, Nodes, and Containers require handling field interdependen-

cies, boundary values, and invalid combinations during error generation. Coverage-directed

fuzzing improves input exploration by maximizing code paths executed in the kubelet, us-

ing feedback loops and global input corpus.

• Main Contribution 3.1 (MC3.1): We analyze the requirements to generate suit-

able error objects that conform to Kubernetes’ structure and trigger meaningful

errors.

• Main Contribution 3.2 (MC3.2): We introduce the use of Structure-aware fuzzers

to inject data into Kubernetes APIs, handling nested structures (Pods, Nodes, Con-

tainers)

49

6. CONCLUSTION AND FUTURE WORK

• Main Contribution 3.3 (MC3.3): We implement coverage-directed fuzzing to

enhance input exploration by maximizing the code paths executed in the kubelet

using feedback loops and a global input corpus.

RQ2) How can the fuzzing framework with Go structures that explore Ku-

bernetes errors be implemented?

Integrating libFuzzer with libprotobuf-mutator enables effective fuzzing of structured

data (protobuf messages) for Kubernetes components, uncovering errors through valid

erroneous configurations. Protobuf definitions and Go Exported C headers are essential

for providing fuzzing input structures and linking Kubernetes components with the fuzzing

process. Handling of incoming protobuf data is encapsulated, prefixed with encoding head-

ers, transformed into byte slices, and converted into Go Structs. Error handling and log-

ging are important components of the system, capturing and logging execution errors (e.g.,

panics) with metadata and facilitating post-analysis. Panic recovery mechanisms ensure

that panics are captured and logged during fuzzing, filtering non-actionable errors like nil

pointer dereferences.

• Main Contribution 4.1 (MC4.1): We integrate effective fuzzing of structured

data (protobuf messages) for Kubernetes components.

• Main Contribution 4.2 (MC4.2): We handle incoming mutated protobuf data,

encapsulating and prefixing it with encoding headers and transforming it into Go

Structs to simulate real Kubernetes scenarios.

• Main Contribution 4.3 (MC4.3): We integrate error handling and logging to

capture execution errors (e.g., panics) with metadata.

RQ3) How to evaluate the efficacy of the fuzzing approach for Kubernetes

Error object generation?

Structure-aware fuzzing significantly improves code coverage and explores more execu-

tion paths than String-based input fuzzing. This highlights the benefit of understanding

structures during fuzzing. Structure-aware fuzzer processes more input corpus and han-

dles complex input cases but at the cost of slower execution speeds. The Structure-aware

fuzzer dealt with a larger and more complex corpus, leading to a broader exploration of

inputs. Despite higher code coverage, Structure-aware fuzzing showed more efficient mem-

ory usage in many cases, except for some resource-intensive functions. Some errors were

highly reproducible, indicating consistent problems in specific functions, while others were

50

6.2 Future Work

less consistent, requiring further refinement. Minimal false positives were observed across

most functions, ensuring accuracy in error detection. Feedback-driven corpus generation

resulted in faster and more consistent coverage growth, allowing the fuzzer to discover more

code paths in less time. Long runtimes (3-5 days) were necessary to discover deeper bugs,

with some functions like HandleMemExceeded running for almost 40 hours. Functions with

slow units and Out-of-Memory (OoM) issues terminated prematurely, impacting fuzzing

efficiency.

• Main Finding 5.1 (MF5.1): Structure-aware fuzzing significantly improves code

coverage and explores more execution paths than String-based input fuzzing.

• Main Finding 5.2 (MF5.2): The Structure-aware fuzzer processes a larger and

more complex input corpus, leading to broader input exploration and slower execution

speeds.

• Main Finding 5.3 (MF5.3): Specific errors are highly reproducible, indicating

consistent issues in particular functions, while others require refinement due to in-

consistent reproducibility.

• Main Finding 5.4 (MF5.4): Feedback-driven corpus generation leads to faster

and more consistent coverage growth, discovering additional code paths in less time.

• Main Finding 5.5 (MF5.5): Long runtimes (3-5 days) are necessary to uncover

deeper bugs, with functions like HandleMemExceeded running for almost 40 hours.

6.2 Future Work

Kubernetes is used in large-scale applications and distributed systems in sensitive produc-

tion environments. Millions of Lines of Code are added every year. Future efforts should

improve the fuzzing tool’s operation to catch up with constant incoming changes from

Kubernetes.

• Optimize the Fuzzing Design and Tool: The existing tool for fuzzing has good

prospects but has yet to be improved further in effectiveness, particularly speed over

the level of code coverage. There were some possibilities for improvement regarding

input mutation processing and corpus handling efficiency. Optimizing the fuzzer’s

design will allow quicker test runs without sacrificing the coverage of Kubernetes

components.

51

6. CONCLUSTION AND FUTURE WORK

• Faster Corpus Sharing: The existing process of corpus sharing, which uses manual

synchronization (e.g., via rsync), could be optimized for faster and more automated

sharing of test cases across compute nodes. More efficient, automatic processes will

make it possible to update the corpus in real-time, which will facilitate the creation

of more test cases for edge cases.

• Longer Runtimes: As seen in the evaluation, extending the running time allows for

more bugs to be captured and deeper code paths to be explored. Additional errors

can be found by enabling the fuzzing to have a longer runtime of 3 to 5 days or

weeks. Fuzzer testing strategy, from simple tests to more complex functions such as

HandleMemExceeded, and continuous long-running fuzzing, will ensure that hard-

to-reach errors are discovered and addressed.

• More Kubernetes Components Fuzzed: Currently, the target of the Structure-

aware fuzzer is mainly kubelet. Future work should focus on fuzzing components

outside the client, such as the API server, controllers, and networking layers. This

will ensure that the system is resilient to erroneous inputs and errors, thus better

evaluating the stability of Kubernetes systems.

• More Compute Power Required: The results show that some fuzzing inputs (e.g.,

fuzzing of complicated functions) are rather resource-demanding regarding memory

and CPU. Increasing the computing capacity (such as issuing more computing ma-

chines or cloud resources) would lead to more parallel fuzzing jobs, faster test exe-

cution, and better corpus management. This would improve the performance of the

fuzzer and the rate of finding bugs.

• Enhanced Error Object Analysis: Future iterations of the fuzzer should improve

the handling of error objects, particularly in reproducibility and false positive re-

duction. A more sophisticated analysis framework for error objects could provide

deeper insights into the causes of errors and facilitate faster debugging and patching

of vulnerabilities.

• Improved Feedback-driven Corpus Generation: While feedback-driven corpus

generation has demonstrated its effectiveness, there is room to refine this process

further. Leveraging more advanced machine learning mechanisms could help the

fuzzer prioritize inputs that are more likely to generate new coverage paths, resulting

in even faster bug discovery.

52

6.2 Future Work

• Target Optimization for Performance Bottlenecks: Specific Kubernetes func-

tions, such as DoesNotDeletePodDirsIfContainerIsRunning, shows high crash and

slow unit rates. Future work should optimize these performance bottlenecks by fine-

tuning fuzzing parameters or investigating alternative fuzzing strategies designed

explicitly for resource-intensive functions.

53

References

[1] The Kubernetes Authors. Kubernetes: Production-Grade Container Or-

chestration. https://kubernetes.io/, 2024. Accessed: 2024-09-12. 1

[2] Go Authors. The Go Programming Language, 2024. Accessed: 2024-05-19. 1

[3] Kubernetes Authors. fuzzer.go. https://github.com/kubernetes/

apimachinery/blob/master/pkg/apis/meta/fuzzer/fuzzer.go, 2024. Accessed:

2024-05-19. 1

[4] Google. Structure-Aware Fuzzing. https://github.com/google/fuzzing/

blob/master/docs/structure-aware-fuzzing.md. Accessed: March 18, 2024. 1,

12, 24

[5] CNCF Authors. CNCF Fuzzers. https://github.com/cncf/cncf-fuzzing,

2024. Accessed: 2024-05-19. 1

[6] Valentin J.M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,

Manuel Egele, Edward J. Schwartz, and Maverick Woo. The Art, Sci-

ence, and Engineering of Fuzzing: A Survey. IEEE Transactions on Software

Engineering, 47(11):2312–2331, 2021. 1

[7] Eddy Truyen, Dimitri Van Landuyt, Davy Preuveneers, Bert Lagaisse,

and Wouter Joosen. A Comprehensive Feature Comparison Study of

Open-Source Container Orchestration Frameworks. Applied Sciences, 9(5),

2019. 1

[8] CNCF. CNCF Annual Survey 2023. https://www.cncf.io/reports/

cncf-annual-survey-2023/, 2023. Accessed: 2024-09-22. 1

[9] Eddy Truyen, Nane Kratzke, Dimitri Van Landuyt, Bert Lagaisse, and

Wouter Joosen. Managing Feature Compatibility in Kubernetes: Vendor

Comparison and Analysis. IEEE Access, 8:228420–228439, 2020. 2, 3

54

https://kubernetes.io/
https://go.dev/
https://github.com/kubernetes/apimachinery/blob/master/pkg/apis/meta/fuzzer/fuzzer.go
https://github.com/kubernetes/apimachinery/blob/master/pkg/apis/meta/fuzzer/fuzzer.go
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://github.com/google/fuzzing/blob/master/docs/structure-aware-fuzzing.md
https://github.com/cncf/cncf-fuzzing
https://www.mdpi.com/2076-3417/9/5/931
https://www.mdpi.com/2076-3417/9/5/931
https://www.cncf.io/reports/cncf-annual-survey-2023/
https://www.cncf.io/reports/cncf-annual-survey-2023/

REFERENCES

[10] Amazon Elastic Kubernetes Service (EKS) User Guide. https://docs.aws.

amazon.com/eks/latest/userguide/what-is-eks.html. Accessed: May 6, 2024. 2

[11] Google Kubernetes Engine. https://cloud.google.com/kubernetes-engine?

hl=en. Accessed: May 6, 2024. 2

[12] ServerFault: Q&A for System and Network Administrators. https://

serverfault.com/, 2024. Accessed: 2024-09-12. 2

[13] Alexandru Iosup, Fernando Kuipers, Ana Lucia Varbanescu, Paola

Grosso, Animesh Trivedi, Jan Rellermeyer, Lin Wang, Alexandru Uta,

and Francesco Regazzoni. Future Computer Systems and Networking

Research in the Netherlands: A Manifesto, 2022. 6

[14] Nilton Bila, Paolo Dettori, Ali Kanso, Yuji Watanabe, and Alaa

Youssef. Leveraging the Serverless Architecture for Securing Linux Con-

tainers. In 2017 IEEE 37th International Conference on Distributed Computing Sys-

tems Workshops (ICDCSW), pages 401–404, 2017. 7

[15] Kubernetes. Architecture. https://github.com/kubernetes/

design-proposals-archive/blob/main/architecture/architecture.md, 2023.

Accessed: 2024-04-15. 8, 17

[16] Protocol Buffers in Kubernetes API Machinery. https:

//github.com/kubernetes/design-proposals-archive/blob/

acc25e14ca83dfda4f66d8cb1f1b491f26e78ffe/api-machinery/protobuf.md.

Accessed: March 16, 2024. 8, 10

[17] Google. Overview. https://protobuf.dev/overview/, 2024. Accessed: 2023-04-

23. 9

[18] Barton P. Miller, Lars Fredriksen, and Bryan So. An empirical study of

the reliability of UNIX utilities. Commun. ACM, 33(12):32–44, dec 1990. 11

[19] Barton Miller, David Koski, Cjin Lee, Vivekananda Maganty, Ravi

Murthy, Ajitkumar Natarajan, and Jeff Steidl. Fuzz Revisited: A Re-

Examination of the Reliability of UNIX Utilities and Services, 01 1998. 11

55

https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://cloud.google.com/kubernetes-engine?hl=en
https://cloud.google.com/kubernetes-engine?hl=en
https://serverfault.com/
https://serverfault.com/
https://arxiv.org/abs/2206.03259
https://arxiv.org/abs/2206.03259
https://github.com/kubernetes/design-proposals-archive/blob/main/architecture/architecture.md
https://github.com/kubernetes/design-proposals-archive/blob/main/architecture/architecture.md
https://github.com/kubernetes/design-proposals-archive/blob/acc25e14ca83dfda4f66d8cb1f1b491f26e78ffe/api-machinery/protobuf.md
https://github.com/kubernetes/design-proposals-archive/blob/acc25e14ca83dfda4f66d8cb1f1b491f26e78ffe/api-machinery/protobuf.md
https://github.com/kubernetes/design-proposals-archive/blob/acc25e14ca83dfda4f66d8cb1f1b491f26e78ffe/api-machinery/protobuf.md
https://protobuf.dev/overview/
https://doi.org/10.1145/96267.96279
https://doi.org/10.1145/96267.96279

REFERENCES

[20] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. Finding and un-

derstanding bugs in C compilers. In Proceedings of the 32nd ACM SIGPLAN

Conference on Programming Language Design and Implementation, PLDI ’11, page

283–294, New York, NY, USA, 2011. Association for Computing Machinery. 11, 12

[21] GNU Project. GCC, the GNU Compiler Collection. https://gcc.gnu.org/,

2024. Accessed: 2024-09-22. 11

[22] LLVM Project. Clang: a C Language Family Frontend for LLVM. https:

//clang.llvm.org/, 2024. Accessed: 2024-09-22. 11

[23] P. Godefroid, M.Y. Levin, and D. Molnar. SAGE: Whitebox fuzzing for

security testing: SAGE has had a remarkable impact at Microsoft. 10:20–27,

01 2012. 11

[24] Google. American Fuzzy Lop (AFL). https://github.com/google/AFL, 2024.

Accessed: 2024-09-22. 11, 12

[25] LLVM Project. LibFuzzer – A Library for Coverage-Guided Fuzz Testing,

2024. Accessed: [Insert access date here]. 12

[26] George Torres, Davide Pesavento, Junxiao Shi, and Lotfi Benmohamed.

NFDFuzz: A Stateful Structure-Aware Fuzzer for Named Data Network-

ing. In Proceedings of the 7th ACM Conference on Information-Centric Networking,

ICN ’20, page 169–171, New York, NY, USA, 2020. Association for Computing Ma-

chinery. 12

[27] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. Superion: Grammar-

Aware Greybox Fuzzing. In 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE), pages 724–735, 2019. 12

[28] Andrea Fioraldi, Daniele Cono D’Elia, and Emilio Coppa. WEIZZ: au-

tomatic grey-box fuzzing for structured binary formats. In Proceedings of

the 29th ACM SIGSOFT International Symposium on Software Testing and Analy-

sis, ISSTA 2020, page 1–13, New York, NY, USA, 2020. Association for Computing

Machinery. 12

[29] Google. libprotobuf-mutator: A library to randomly mutate protocol

buffers. https://github.com/google/libprotobuf-mutator, 2024. GitHub repos-

itory. 12, 13

56

https://doi-org.vu-nl.idm.oclc.org/10.1145/1993498.1993532
https://doi-org.vu-nl.idm.oclc.org/10.1145/1993498.1993532
https://gcc.gnu.org/
https://clang.llvm.org/
https://clang.llvm.org/
https://github.com/google/AFL
https://llvm.org/docs/LibFuzzer.html
https://doi-org.vu-nl.idm.oclc.org/10.1145/3405656.3420234
https://doi-org.vu-nl.idm.oclc.org/10.1145/3405656.3420234
https://doi-org.vu-nl.idm.oclc.org/10.1145/3395363.3397372
https://doi-org.vu-nl.idm.oclc.org/10.1145/3395363.3397372
https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator
https://github.com/google/libprotobuf-mutator

REFERENCES

[30] Google. Chromium Issues: Protobuf Hotlist 2. https://issues.chromium.

org/issues?q=hotlistid:5432475&lpm, 2023. Accessed: 2024-05-11. 12

[31] Chromium Issues: Protobuf Hotlist. https://issues.chromium.org/issues?

q=hotlistid:5432475&protobuf&p=1. Accessed: 2024-05-11. 12

[32] Van-Thuan Pham, Marcel Böhme, Andrew E. Santosa, Alexandru Răz-

van Căciulescu, and Abhik Roychoudhury. Smart Greybox Fuzzing. IEEE

Transactions on Software Engineering, 47(9):1980–1997, 2021. 13

[33] Kostya Serebryany. Structure-Aware Fuzzing for Clang and LLVM with

libprotobuf-mutator. In LLVM Developers’ Meeting, October 2017. Presentation

at LLVM Developers’ Meeting, San Jose, CA. 13

[34] Brendan Burns, Brian Grant, David Oppenheimer, Eric Brewer, and

John Wilkes. Borg, Omega, and Kubernetes: Lessons learned from three

container-management systems over a decade. Queue, 14(1):70–93, jan 2016.

17

[35] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppen-

heimer, Eric Tune, and John Wilkes. Large-scale cluster management

at Google with Borg. In Proceedings of the Tenth European Conference on Com-

puter Systems, EuroSys ’15, New York, NY, USA, 2015. Association for Computing

Machinery. 17

[36] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael

Hicks. Evaluating Fuzz Testing. In Proceedings of the 2018 ACM SIGSAC Con-

ference on Computer and Communications Security, CCS ’18, page 2123–2138, New

York, NY, USA, 2018. Association for Computing Machinery. 36, 37

[37] rsync. rsync - Remote file and directory synchronization, 2024. Accessed: 2024-09-18.

38

[38] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek, Andrea

Mambretti, Wil Robertson, Frederick Ulrich, and Ryan Whelan. LAVA:

Large-Scale Automated Vulnerability Addition. In 2016 IEEE Symposium on

Security and Privacy (SP), pages 110–121, 2016. 39

57

https://issues.chromium.org/issues?q=hotlistid:5432475&lpm
https://issues.chromium.org/issues?q=hotlistid:5432475&lpm
https://issues.chromium.org/issues?q=hotlistid:5432475&protobuf&p=1
https://issues.chromium.org/issues?q=hotlistid:5432475&protobuf&p=1
https://llvm.org/devmtg/2017-10/slides/
https://llvm.org/devmtg/2017-10/slides/
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/2898442.2898444
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/3243734.3243804
https://linux.die.net/man/1/rsync

REFERENCES

[39] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-

based Greybox Fuzzing as Markov Chain. In Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, CCS ’16, page

1032–1043, New York, NY, USA, 2016. Association for Computing Machinery. 39

[40] Bleve Search. Bleve: A modern open-source search library for Go, 2024.

Accessed: 2024-09-18. 47

58

https://doi.org/10.1145/2976749.2978428
https://doi.org/10.1145/2976749.2978428
https://blevesearch.com/

Appendix

This artifact description will explain how to setup the fuzzer and reproduce results as seen

in this project. We explain how to obtain the software, set up the same environment,

and run the fuzzer. We have two repositories for GitHub: the fuzzer environments and

the Kubernetes forked environments, which are modified for fuzzer needs. There are also

datanotebooks for plots and graphs

6.3 Artifact Check-List

• Program: Kubefuzzthesis (https://github.com/cymtrick/kubefuzzthesis/), kubernetes-

error-fuzzer (https://github.com/cymtrick/kubernetes-error-fuzzer/),

• Compilation: C++11 above, Make, Go 1.22 and above, Python3.7 (Python3 is

needed for the plotting tools only)

• Experiments: Experiments are maintained at

https://github.com/cymtrick/kubefuzzthesis/tree/main/initial-tests.

6.4 Description

It’s not required to fork the latest Kubernetes fuzzer as it’s not supported. The software

comes with correct compatible Kubernetes version :

$git clone https://github.com/cymtrick/kubefuzzthesis.git
$git submodule update --init

The implementation of the fuzzing on the kubelet can then be found in “src/kubelet”

. An initial investigation for the fuzzing process on the go with C++ and a Make script

to support it can be found in “initial-tests.” Modified Kubernetes can be found under

“libs/Kubernetes” . The datanotebooks for generating plots can be found “datanotebooks”

59

REFERENCES

https://github.com/cymtrick/kubefuzzthesis/tree/main/initial-tests
https://github.com/cymtrick/kubefuzzthesis/tree/main/datanotebooks

6.5 Software Dependencies

The software will only run on GNU/Linux. It runs on only the latest versions of glibc and

glibc++. Glibc 2.38 is recommended based on previous experience with failure on DAS-5,

which has glibc-2.22 and can’t be upgraded.

We recommend the libprotobuf mutator of version v1.2 as the next version runs into

cmake build issues

https://github.com/google/libprotobuf-mutator/tree/v1.2

protoc –version should be less than v3.21.12 to support the current compilation. Other-

wise, while running the libprotobuf mutator build, you would run into this issue.

CMake Warning at /usr/share/cmake-3.27/Modules/FindProtobuf.cmake:526 (message):
Protobuf compiler version 26.0 doesn't match library version 3.21.12
Call Stack (most recent call first):
CMakeLists.txt:129 (find_package

6.6 Experiment Workflow

There are a few steps to start the fuzzer successfully. The first would be compiling the mock

Kubernetes layer along with the deserializer. These are present in libs/kubernetes/pkg/fuzzer.

$cd libs/kubernetes/pkg/fuzzer
$go build -o libpodfuzzermock.a -buildmode=c-archive fuzzpodmutator.go
$go build -o libyamlfuzzermock.a -buildmode=c-archive fuzzyamlmutator.go

Now, these static files need to be copied into the fuzzer location outside.

$cp libpodfuzzermock.* ../../../../src/kubelet
$cp libyamlfuzzermock.* ../../../../src/kubelet-yaml

The headers are already present, so the binaries are generated for each subfolder, which

are named on function names. The make needs to be run first to develop the binaries.

Before running make, we need to sure to remove the existing fuzzer files.

$cd src/kubelet
$find . -type d -exec sh -c '(cd "{}" &&
[-f lpm_libfuzz_struct_aware_unguided] &&
rm -rf lpm_libfuzz_struct_aware_unguided)' \;
$find . -type d -exec sh -c '(cd "{}" && [-f Makefile] && make)' \;

60

6.7 Self Reflection

This will create fuzzer files inside the subfolders. Each subfolder has lpm_libfuzz_struct

_aware_guided executable binary. This is the fuzzer entry point. To run this binary it

can done in this way.

$mkdir corpus
$cd example-subfolder/
// 5 jobs in parallel
$./lpm_libfuzz_struct_aware_guided ../corpus -workers=5 -jobs=5

All of the different logs will be logged into klog.log and fuzz-*.log . You must pass the

file to the fuzzer to reproduce a crash or slow unit.

$./lpm_libfuzz_struct_aware_guided ./slow-unit-*
$./lpm_libfuzz_struct_aware_guided ./crash-

For the AST Scan, there is a file called src/check_errors.go . This will run on

the logs that are found in sub-directories and store the detected errors in the file de-

tected_errors.go.

$go run check_errors.go

6.7 Self Reflection

This was challenging work. Initially, I had no idea about the internals of Kubernetes

even though I had experience deploying on it as a dev-ops or any in-depth knowledge of

fuzzing, even if I come from a security background. This topic has grounded me, taught

me the fundamentals again, and made me more proficient in C and C ++ environments.

I learned to code in Go lang from scratch and built a fuzzer on top of it. Additionally,

I needed to understand the Kubernetes internals in-depth. Some Kubernetes internals

were rewritten to support the fuzzing. This gave me in-depth confidence in understanding

complex distributed systems such as Kubernetes. There were moments of doubt about

whether the project was going in the right direction. I made the crucial mistake of fuzzing

the inputs incorrectly in March, which could have generated invalid results. Thanks to my

daily supervisor, Sacheen, for identifying the error and guiding me. Almost one week was

spent correcting Kubernetes’s protobuf data to support our run time. Resolving library

dependency was challenging, mainly for the libprotobuf-mutator, as there’s little to no

documentation on resolving the compatibility issues. We had to do intensive research for a

month in January to get the dependencies right. We also had trouble running the fuzzers

on DAS-5 as the glibc version was not supported. Downgrading the fuzzer for almost 2

61

REFERENCES

weeks didn’t work, and there were many issues with the glibc compatibility . We went

with the public cloud and local system. Happeniess was found when the AST scan revealed

unique errors that were detected. Last month was purely data gathering, generating plots,

and completing the writing part. Despite self-doubt and hardships, we could execute this

project successfully.

62

	List of Figures
	List of Tables
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Research Questions
	1.4 Challenges
	1.5 Societal Relevance
	1.6 Plagiarism Declaration
	1.7 Thesis Outline

	2 Background
	2.1 Kubelet, Kubernetes-API-server, and ETCD
	2.2 Protobuf in Kubernetes
	2.3 Structure Aware Fuzzing

	3 Design of Kubernetes Erroneous Object Generation
	3.1 Requirement Analysis
	3.2 Requirements
	3.3 High-Level Design
	3.4 Components of the Erroneous Object Generation Flow
	3.5 Summary

	4 Implementation of Structure Aware Fuzzer with Kubernetes
	4.1 Implementation of Structure-Aware Fuzzer
	4.2 Implementation of Unmarshaler
	4.3 Error Handling and Logging
	4.4 Summary

	5 Evaluation of the Erroneous Objects Generated
	5.1 Abstract Syntax Tree for Static Analysis
	5.2 Expremiental Setup
	5.3 Evaluation
	5.4 Impact of Feeback Driven Corpus Generation
	5.5 Performance of AST Static Analyzer

	6 Conclustion And Future Work
	6.1 Summary of Answers to main research questions
	6.2 Future Work

	References
	6.3 Artifact Check-List
	6.4 Description
	6.5 Software Dependencies
	6.6 Experiment Workflow
	6.7 Self Reflection

