VRIJE
~ UNIVERSITEIT
N° AMSTERDAM

Bachelor Thesis

ShareBench: Performance
Characterization of Distributed
Resource-Sharing Mechanisms

Author: Lennart K.M. Schulz (2734873)

1st supervisor: ~ Prof. dr. ir. Alexandru losup
daily supervisor: Sacheendra Talluri, MSc
2nd reader: Dr. Daniele Bonetta

A thesis submitted in fulfillment of the requirements for
the VU Bachelor of Science degree in Computer Science

April 28, 2025

“You are something the whole universe is doing in the same way that a wave
is something that the whole ocean is doing.”

- ALAN WATTS

Abstract

Global data production is increasing rapidly, and our modern society increas-
ingly relies on the availability and operation of, often warehouse-sized, data
centers to satisfy the various demands to process this data. However, the
energy consumption and carbon footprint of these computing facilities are a
prevalent global issue. To meet the escalating computational demands, in-
creases in efficiency are crucial. One effective strategy is to share resources
among multiple applications, thereby improving resource utilization. There
are numerous such distributed resource-sharing mechanisms and policies, each
with distinct performance characteristics. Understanding how individual mech-
anisms compare is essential for their deliberate and appropriate utilization and

should underpin the development of new mechanisms.

This thesis aims to contribute by proposing a systematic approach to ana-
lyzing the real-world performance of distributed resource-sharing mechanisms
and policies. We design and implement both a workload generator and an
infrastructure framework for automated real-world performance analysis stud-
ies of such mechanisms for Spark SQL on Kubernetes, and subsequently use
both components to characterize the performance of three resource-sharing
mechanisms. Our experiments demonstrate that performance varies signifi-
cantly with workload characteristics, emphasizing the importance of informed

decisions in the choice of mechanisms and development of novel alternatives.

Acknowledgements

I would like to thank Sacheendra Talluri for taking the time to supervise this
work and introducing me to the world of distributed resource-sharing mech-
anisms. My gratitude also goes to Alexandru Iosup for his highly insightful
meetings that always left me with a strong desire to learn more, more often
than not by showing me the extent of what is still unknown to me. I also want
to thank my lovely friends, not only for their academic support in each of our
many collaborative study sessions, but also for giving me a welcome distraction
from sitting at a desk just when I needed it every so often. Lastly, I want to
express my deepest gratitude to my partner and my family, who had to see me
stressed and frustrated more often than I would have liked. You repeatedly
managed to get me back on my feet, gave me new perspectives, and helped me

to keep pushing.

Contents

1 Introduction 1
1.1 Problem Statement 3
1.2 Research Questions L 4
1.3 Research Methodology 5
1.4 Thesis Contributions 6
1.5 Societal Relevance 7
1.6 Plagiarism Declaration oo 7
1.7 Thesis Structure L 7

2 Background and Related Work on Distributed Computing and Resource-
Sharing 9
2.1 Introduction to Data Centers: Relevance and Emerging Issues 9
2.2 Introduction to OLAP and Interactive Workloads 10
2.3 Resource Managers for Spark L. 11
2.4 Resource-Sharing Mechanisms of Spark on Kubernetes 12
2.5 Workloads in Related Work L. 15
2.6 Related Work on Performance Characterization of Distributed Computing

Systemso 16
2.7 Related Work on Automated Experiments 16

3 ShareBench-Gen: Design and Implementation of the Workload Gener-
ator 17
3.1 Requirements Analysis 18
3.2 Conceptual Design Lo 20
3.3 Implementation with TPC-DS Queries 23
3.4 Evaluation oL 25
3.5 Limitations 26

CONTENTS

3.6 Future Work

3.7 Summary ... L

4 ShareBench-Base: Design and Implementation of the Infrastructure

Framework

4.1 Requirements Analysis
4.2 Conceptual Design L
4.3 Implementation for Spark SQL on Kubernetes.
4.4 Evaluationo
4.5 Limitations and Future Work o 0oL
4.6 SUMMATY oo e e e e

5 Performance Characterization of Resource Sharing Mechanisms of Spark

on Kubernetes

5.1 Experiment Setupo
5.2 Workloads L
5.3 Findings oL
5.4 Limitations L
5.5 Summary ... L.

6 Conclusion

6.1 Summary of the Work o oL
6.2 Summary and Future Work L
References

A Spark Configurations

B Self Reflection

ii

57
o7
60

63

(e

81

Introduction

Data is everywhere. It is collected in all thinkable situations from sports [1] to educa-
tion [2], finance [3], medicine [4], transportation [5], and many others; often fully trans-
parent to the producer [6]. With the ever-growing breadth and depth of data collection,
the amount of digital data generated per year has increased steadily [7] and current esti-
mates predict an annual digital data production of approximately 291 zettabytes (ZB) by
2027 [8]. To put this number in perspective: storing 291 ZB of data on commonly used
64 GB microSD cards would require more than 4.5 x 101! cards, enough to physically cover
over 100,000 football fields' when placed next to each other, fill up three-quarters of the
Empire State Building in volume, or reach the moon more than 11 times when stacked.
This explosive growth is not surprising, given the increasingly low cost associated with
and the business value possibly derived from large amounts of data [9, 10]

Although production and storage of data by themselves can already be viable busi-
nesses, more often than not, some processing is necessary for the data to be used to its
full potential [11]. This processing can have many forms, from simple queries for a spe-
cific selection of data to complex multistage pipelines that sanitize, filter, transform, and
combine data, to name just a few. Due to various reasons, including the end of Moore’s
Law [11, 12] and the increasing complexity and scale of such data-processing applications
in both scientific and non-scientific computing, a single machine is often unable to offer
enough performance to make (timely) completion possible. The work is instead divided
into multiple parts that are then executed concurrently by separate machines, a clus-
ter. However, writing such distributed applications is no simple task and requires careful
consideration. Application Frameworks (AFs) simplify the process by offering common

abstractions, hiding the intricacies of (efficiently) distributing the work and subsequently

! Assuming a 100 x 68 m field size as used in, among others, the Wembley stadium and Allianz Arena.

1. INTRODUCTION

Application Application
Application Framework (AF) Application Framework (AF)

'S'F'-"QJ\Z RAY &Flmk SPQJ\Z RAY @Flink

\ﬁﬁ

Resource Manager (RM)

éé MESOS /YARN
J v v

Machine j Machine j Machine Lﬁ

Figure 1.1: Composition of two application frameworks and a resource manager in a three-
node cluster, including examples of common choices for both components.

collecting the results!, which allow programmers to write highly distributed programs
using simple building blocks. Some popular AFs include Spark [13, 14], Hadoop MapRe-
duce [15], Flink [16], and Ray [17].

Even though such distributed applications use multiple machines to speed up the com-
putation, they often need the (full) processing power of those machines only for brief
periods. Idle machines, however, continue to consume substantial energy [18], leading to
significant operational costs. This cost is further compounded by the fact that unused
resources represent a lost opportunity for value as they could be used by other applica-
tions. To mitigate this, software systems known as Resource Managers (RMs) make it
possible for many applications to share a set of resources by coordinating their allocation
and scheduling.? Popular resource managers include Kubernetes [19], YARN [20], and
Mesos [21] , among many others, with frequent advances originating from both industry

and academia.

Figure 1.1 illustrates the previously introduced composition with the examcple of two
applications running in a cluster of three machines. Each application uses an AF. Both
are deployed through an RM to coordinate allocation and scheduling on a set of machines,

effectively sharing the available resources.

' A rather grand simplification of the sophisticated functions of many AFs.
2A rather minimal summary of the intricate mechanisms of many RM:s.

1.1 Problem Statement

1.1 Problem Statement

The mechanism and policy by which resources are shared between applications' cannot
only differ between various RMs but even for a single composition there are often many
options. Although a thorough understanding is imperative for good utilization of exist-
ing mechanisms and the development of new mechanisms, we identify a critical lack
of knowledge regarding the performance characteristics of these distributed
resource-sharing mechanisms and policies. (P1)

Evaluating the performance characteristics of resource-sharing mechanisms, however, is
not trivial and comes with many challenges. One is the complexity of the required infras-
tructure. While even complex algorithms of theoretical computer science, for instance, can
often be evaluated on a single machine, research into massivizing computer systems com-
monly requires (as the name would suggest) a distributed system composed of numerous
machines. Without an infrastructure that is representative of the systems used in practice
evaluation of distributed resource-sharing mechanisms and policies is either not possible
at all or at least will not produce meaningful results. However, setting up a repre-
sentative infrastructure is technically challenging and may pose an unfeasible
overhead for some research. (P2)

Having a functional infrastructure, while necessary, is not yet sufficient for the eval-
uation. Another critical aspect of any performance evaluation is the workload used to
test the system. Whether using production workload traces or generating synthetic ones,
the choice of workload can greatly influence the outcomes of performance evaluations.
Without carefully considered workloads, evaluations may fail to capture sig-
nificant characteristics of resource-sharing performance. (P3)

Simulation of real-world workload traces by synthetic recreation of the same load char-
acteristics is a common option as the choice of workload in performance analysis stud-
ies [22, 23]. Another alternative is to use generators for fully synthetic workloads, typ-
ically using probabilistic distributions to model workloads [24, 25]. However, both of
these options fail to offer fine-grained control over specific workload characteristics, es-
pecially considering inter-application load, which is needed for performance evaluation of
distributed resource-sharing mechanisms and policies for distinct workload characteristics.

Although some of the above problems are addressed to some degree by existing research,
that research does not investigate the two-level structure of AF and RM [26, 27] or uses

simple ad hoc solutions [23, 28, 29]. Based on these observations, we identify a lack of

!Hereinafter simply referred to as resource-sharing mechanism or simply mechanism.

1. INTRODUCTION

a systematic and generally applicable process for evaluating the performance

characteristics of distributed resource-sharing mechanisms and policies. (P4)

1.2 Research Questions

The goal of this work is to answer the Main Research Question (MRQ): How to sys-
tematically analyze the real-world performance of distributed resource-sharing mechanisms
and policies?

Since the scope of this work is limited by time constraints!, the objective is to propose,
implement, and evaluate a system for a specific composition of AF and RM, namely
Spark SQL on Kubernetes, but design it so that the findings are applicable for similar
compositions with different components, thereby answering the main research question in
its generality and addressing P4. This process is guided by the following subquestions,

each aimed at addressing one of the problems illustrated in Section 1.1.

Research Question 1 (RQ1):
How to design and implement a workload generator for performance analysis studies
of distributed resource-sharing mechanisms and policies? As discussed in P3, care-
fully considered workloads are essential for performance analysis studies. Especially
for performance characterization of distributed resource-sharing mechanisms, it is
important to have great control over the inter-application load characteristics of the
workload. Existing approaches fail to provide such control and thus, while usable
for “simple” performance evaluations?, are ill-suited for answering the main research
question. This question is therefore aimed at designing and implementing a new
kind of workload generator that is geared toward multi-application workloads and

offers extensive control over the inter-application load characteristics.

Research Question 2 (RQ2):
How to design and implement an infrastructure framework for automated real-world
performance analysis studies of distributed resource-sharing mechanisms and poli-
cies? P2 highlights a significant obstacle on the way to building a better under-

standing of the large variety of distributed resource-sharing mechanisms and policies.

'The Bachelor Thesis at VU Amsterdam is a 15 ECTS (420 hours) project, intended to be completed
within 3 months.

2The word “simple” here refers to the evaluations that try to capture the overall performance but not
necessarily the performance characteristics.

1.3 Research Methodology

To address that problem and facilitate subsequent experiments with different mech-
anisms, AFs, and RMs this research question does not simply tackle the implemen-
tation of a one-off infrastructure, but is more concerned with designing a complete
infrastructure framework that is highly automated and reusable for other research

by various researchers.

Research Question 3 (RQ3):
What are the performance characteristics of the resource-sharing mechanisms of
Spark on Kubernetes? The final research question aims to demonstrate the capabili-
ties of the proposed solutions for RQ2 and RQ1 and take a step toward addressing

P1, by evaluating three resource-sharing mechanisms of Spark SQL on Kubernetes.

1.3 Research Methodology

System Design and Implementation:

For both RQ1 and RQ2, we follow the AtLarge Design Process [30] in conjunc-
tion with recognized and structured software architecture and software engineering
practices as described by Sommerville [31] and Bass et al. [32], respectively. By
that, we repeatedly iterate through: (i) problem analysis, (ii) architecture design,
(iii) prototype implementation, and (iv) testing and validation, until the design gives
a satisfactory answer to the associated research question.

The AtLarge Design Process has repeatedly shown to be successful in over a decade

of use, leading to numerous publications, some of which highly cited [33-37].

Experimental Research:
For RQ3, we use experimental research methods, following the best practices in
the field for the design, conduction, and analysis of the experiments [38-40]. To
perform the experiments, we: (i) define performance metrics, (ii) use the design of
RQ1 to generate workloads, (iii) use the design of RQ2 to set up the experiment
infrastructure, including the collection of metrics, (iv) perform the experiments, and
finally (v) collect and analyze the resulting data. Steps (ii) and (iii) are where the
research questions interleave as advances in the designs allow more experiments and
subsequent experiences uncover new requirements or missing features of the designs.

Open-Science:

All research of this work follows the principles of open science [41, 42], making the

1. INTRODUCTION

1.4

code and all data publicly available on GitHub!, strengthening reproducibility and

promoting further research.

Thesis Contributions

By answering the research questions, we produce several contributions.

Conceptual

(i)

(i)

(iii)

We propose the design of a workload generator for performance analysis studies
of distributed resource-sharing mechanisms and policies. The design stands out
through its simplicity and versatility, being applicable to any type of workload that
can be represented as a collection of discrete work units with defined and foreseeable

durations.

We propose the design of an infrastructure framework for automated real-world per-
formance analysis studies of distributed resource-sharing mechanisms and policies.
The conceptual design of the framework proposes a set of (abstract) components

and processes to automate various types of experiments.

We provide a detailed analysis of the performance characteristics exhibited by three
resource-sharing mechanisms of Spark on Kubernetes. Based on our various find-
ings, we propose actionable insights for the use of existing mechanisms and the

development of new alternatives.

Technical

(i)

(i)

We provide an implementation of the workload generator for Online Analytical Pro-
cessing (OLAP) workloads based on the TPC-DS data set and queries. With exten-
sive control over the generation process, the generator can produce various workloads

with specific characteristics and should be usable for various research projects.

We provide an implementation of the infrastructure framework for Spark SQL on
Kubernetes. Through the use of commonly known components and a modular struc-
ture, the proposed implementation is customizable and extensible for future research

projects.

"https://github.com/atlarge-research/ShareBench

https://github.com/atlarge-research/ShareBench
https://github.com/atlarge-research/ShareBench

1.5 Societal Relevance

1.5 Societal Relevance

Tosup et al. highlight the dependence of our modern society and economy on the various
computer systems functioning of which has become a substantial requirement for many
jobs and a large share of the GDP in the Netherlands [43]. In their manifesto, the authors
further state four grand societal challenges.

The research questions of this work are, in their grand scheme, concerned with building
a better understanding of distributed resource-sharing mechanisms and policies, which are
highly relevant in this era of (hyperscale) cloud data centers, subsequently enabling better
use of existing mechanisms and facilitating the development of more advanced alternatives.
With that, the findings of this work can help to address three of the four challenges.

Better understanding of existing mechanisms can help to give more accurate performance
predictions and avoid failures to improve availability. (Challenge 2: Responsibility)
With better new mechanisms and more appropriate use of existing mechanisms, resources
can be shared more efficiently, allowing more work to be performed by the same (existing)
resources. This can not only reduce the energy footprint, as less resources are needed
(Challenge 3: Sustainability), but may also lower the operational cost for the same

reason, improving the general accessibility to computer systems (Challenge 4: Usabil-

ity).

1.6 Plagiarism Declaration

I hereby confirm that the contents of this thesis are a product of my own independent work
and writing. The work does not contain material copied from any other source (person,
internet, or LLM) unless otherwise indicated, and has not been submitted for assessment

elsewhere.

1.7 Thesis Structure

In Chapter 2 we present relevant background information and briefly discuss related work.
To best understand the work and its position in the larger perspective, it is recommended
to start traversing the thesis there. Chapters 3, 4, and 5 address RQ1, RQ2, and RQ3,
respectively. They largely function independently, with previously introduced concepts

briefly reexplained, and can thus be traversed selectively and in any order if preferred.

1. INTRODUCTION

For those with little time to spare, each chapter begins and ends with a summary of the
most important findings, which should be sufficient to get a high-level overview. For those
with even less time to spare, Chapter 6 summarizes the complete work in a few pages. We

do, however, recommend to read the work in its entirety.

Background and Related Work on
Distributed Computing and

Resource-Sharing

The context of this work, positioned in distributed systems, encompasses many concepts
for which a brief introduction may be useful to aid in the understanding of the subsequent
chapters. In this chapter, we aim to provide such introductions for the most important

concepts. We furthermore present an overview of some related work in the field.

2.1 Introduction to Data Centers: Relevance and Emerging

Issues

Processing of data at large scales is commonly done in data centers. Considered the
“central nervous system of the 21st century” [44] they house not only servers but also the
networking and storage equipment needed to support the various types of demands for
computation, transportation, and storage of data. Data centers can range from a single
server rack in an office back room to warehouse-sized facilities housing thousands to tens of
thousands of servers [45]. However, the information and communications technology (ICT)
landscape is seeing a continuous shift away from traditional (on-premise) data centers in
favor of large-scale cloud data centers [46]. Not only are such “hyperscale” data centers
able to improve the overall efficiency of the equipment with better resource utilization [47]
and more advanced cooling techniques [48], but they also allow customers to get compute
resources on demand, at any time, and with pay-per-use pricing models (as opposed to

the upfront investment and continuous operating costs of self-deployed servers).

2. BACKGROUND AND RELATED WORK ON DISTRIBUTED
COMPUTING AND RESOURCE-SHARING

Functioning of our society increasingly depends on data centers. Large parts of the
commercial sector, medical infrastructure, governments, education, and scientific research,
to name just some examples, rely heavily on the availability of servers for their daily
operational processing needs [10, 49-52]. In an effort to satisfy this demand, there are
thousands of data centers worldwide. In the US, data centers consume electricity in the
hundreds of TWh per year, accounting for 4% of the total electricity demand in 2022, with
higher fractions expected in the coming years [53]. The energy consumption of Google
alone was responsible for close to a million metric tons of CO2 in 2023 [54], and Big
Tech companies take significant investments to reduce the carbon footprint of their data
centers [55].

Although advances in data center hardware technology continue to improve their en-
ergy efficiency, improvements in other areas will also be needed to satisfy our growing
demands for computing over the coming years [11]. Better resource utilization through
more advanced resource-sharing techniques could help address this challenge of our modern

society.

2.2 Introduction to OLAP and Interactive Workloads

Big Data computing was classically associated with batch jobs that were characterized
by long execution times and little to no restrictions on maximum latency. For several
decades now, the landscape has gradually shifted towards more interactive and time-
sensitive jobs [23, 56-58]. One type of data processing consisting largely of such jobs is
Online Analytical Processing (OLAP) which describes complex data querying and anal-
ysis frequently used in business intelligence to gain data insights and increase business

value [59].

2.2.1 Interactive Workloads

In the case of OLAP applications, a workload can be thought of as a timeline of queries
submitted to the system. When visualizing such a timeline, the expected duration of the
queries is used to plot the outstanding work over time. Figure 2.1 shows an example work-
load graph for a single application where the z-axis denotes time, and the y-axis denotes
the number of active queries (that is, queries that have been submitted for processing
but are not yet finished). The figure is additionally annotated by markers on the z-axis
indicating query submission (green star) and completion (red diamond) events to clarify

the example.

10

2.3 Resource Managers for Spark

—— Active Queries ¥ Query Submission ¢ Query Completion
[[[[[[[[[

Active Queries
b
I
|

0 10 20 30 40 50 60 70 80 90 100
Time |[s]

Figure 2.1: Example of a workload graph for a single application. Indicators for query
submission and query completion events are added for clarification.

2.2.2 OLAP Systems and Spark SQL

Distributed processing systems are needed to handle the scale of modern data analytics and
OLAP applications [56]. Although there are specialized systems like Google BigQuery [60],
Microsoft SQL Server Analysis Services [61], and Oracle OLAP [62], SQL engines built on
top of big data platforms that have emerged recently have gained popularity as alterna-
tives [63]. A common advantage of the latter is the integration with open-source systems
like Hadoop [64], which have become the “de facto processing platform for big data” and
are often significantly cheaper than traditional databases for data storage [10].

Spark SQL [65] is such an SQL engine built on top of the popular Application Framework
(AF) Spark, which we selected for this research due to its performance, wide-range of
applications, open-source nature, and popularity [66-69]. A Spark deployment consists of
a driver and one to many executors. The driver is responsible for dividing and distributing

the work among the executors, collecting the results and handling executor failures.

2.3 Resource Managers for Spark

Spark offers a Standalone mode [70], where executors are manually started and connected
to the driver. More commonly however, Spark is deployed through a Resource Man-
ager (RM), such as YARN, Mesos, or Kubernetes, although support for Mesos has been
deprecated since Spark 3.2.0 [71].

While the Standalone mode has a significant advantage over the others for short-running
jobs due to its comparatively low launch overheads [72, 73], it most notably falls short in

terms of resource utilization due to its static allocation of resources. RMs, on the other

11

2. BACKGROUND AND RELATED WORK ON DISTRIBUTED
COMPUTING AND RESOURCE-SHARING

hand, enable the deployment of multiple heterogeneous applications concurrently on the
same cluster, dynamically allocating resources as needed.

YARN has been the de facto standard as the RM for Spark deployments, due to its
deep integration into the Hadoop stack. However, setup, configuration, and maintenance
of YARN clusters can be difficult, in part due to the need to set up the entire Hadoop
stack [72], and Castro et al. further mention “limited reproducibility and portability across
infrastructures” as a limitation of YARN for scientific computing [52].

Kubernetes has established itself as a popular solution for automated deployment of con-
tainerized applications, with all major cloud providers offering Kubernetes services as part
of their Platform-as-a-Service (Paas) suite [74-76]. The rather novel (Spark 2.4.0 in late
2018 [77]) addition of Kubernetes to the supported RMs of Spark and the wide availabil-
ity of Kubernetes compute services facilitate cloud native Spark deployments without the
need for experience in setting up and managing clusters and thus bring high-performance
big data computing to a wide range of potential users. Due to the popularity of Kuber-
netes and the novelty of the composition with Spark, this work focuses on Kubernetes as
the RM.

A Kubernetes cluster consists of a control plane and one to many worker nodes. Ap-
plications are deployed in the form of pods and each node can accommodate multiple
pods, depending on the available resources and requirements of the pods. When Spark is

deployed on Kubernetes, the Spark driver and the executors are individual pods.

2.4 Resource-Sharing Mechanisms of Spark on Kubernetes

When running multiple Spark applications on Kubernetes, the configurations of both the
AF and the RM can be modified to achieve different resource-sharing mechanisms and
policies. Figure 2.2 illustrates the three distinct mechanisms identified for this work.

While the figure uses the example of two Spark applications being deployed on a Ku-
bernetes cluster with six nodes (not including the control plane), the mechanisms are
analogously applicable to larger clusters and more applications.

It should be noted that this list of mechanisms is not exhaustive. Not only can the
more fine-grained policies of each mechanism be further configured, but combinations of
mechanisms are also possible. Other AFs and RMs may moreover offer different mecha-
nisms and policies [21, 78]. These selected mechanisms, however, should represent a wide
range of characteristics and thereby allow a meaningful performance characterization and

comparison.

12

2.4 Resource-Sharing Mechanisms of Spark on Kubernetes

EI Kubernetes Node EI Spark Driver Spark Executor

App 1

O Node O Node ® Node O Node O Node O Node
D1 E1 E1 E2 E2 D2

(a) Static Partitioning

App 1 (@)

O Node O Node {[®@ Node O Node O Node O Node
D1 E1 E2 E2 E2 D2

(b) Dynamic Partitioning (during unbalanced load)

App 1 App 1 &

® Node O Node ® Node O Node ® Node O Node
D1 E1i E2 E1 i E2 E1 {E2 E1 i E2 D2

(¢) Node-Level Sharing

Figure 2.2: Visualizations of the three resource-sharing mechanisms of Spark on Kubernetes
identified for this work.

Static Partitioning Fach of the Kubernetes nodes is assigned to a specific Spark appli-
cation, effectively separating the cluster into multiple smaller parts. The executors (and
the driver) of each application are then scheduled on the dedicated nodes, with each node
exclusively being used by a single executor (or the driver).

Figure 2.2a shows the aforementioned cluster statically partitioned for two Spark ap-
plications. The nodes marked with @ are exclusively available for the first application,
while the nodes marked with @) are similarly only available for the second.

With complete separation of nodes, highlighted by the boundary (@, this approach min-
imizes interference between applications; however, it is likely to under-utilize the available

resources of the cluster when the load is unbalanced.!

Dynamic Partitioning FEach executor is again using a node exclusively (similar to
Static Partitioning); however, the allocation of nodes to applications is no longer static.

The Spark applications are configured to terminate executors after a certain inactivity

1For example, in the case where some application does not have enough tasks to saturate its allocated
resources while another application has outstanding tasks available but cannot use the idle resources

13

2. BACKGROUND AND RELATED WORK ON DISTRIBUTED
COMPUTING AND RESOURCE-SHARING

threshold [79], thus effectively freeing a node in the cluster which can then be used to
accommodate a new executor of another application.

Figure 2.2b shows the same cluster as before, this time with Dynamic Partitioning. The
first application currently uses only one executor (@), while the second has taken advan-
tage of the available resources by deploying a total of three executors (@)). Conceptually,
the applications are still fully separated; however, this time the separation boundary (@
can dynamically adjust in both directions as the load between the applications changes.
The drivers of each application (@) and @) behave the same as before, as they can never
be terminated as long as the application is still running.

As shown by Kaufmann et al., Dynamic Partitioning, while improving executor uti-
lization, is detrimental to the overall runtime for a workload predominantly composed of
short-running tasks due to the overhead of starting new executors [28]. However, when the
timescales are larger, Dynamic Partitioning could improve the overall performance due to
better resource utilization.

In the context of schedulers and, or more specifically, autoscalers, Dynamic Partitioning
is similar to horizontal autoscaling which describes increasing or decreasing the number of

allocated resources according to demand [80, 81].

Node-Level Sharing Nodes are no longer exclusively occupied by a single executor,
eliminating partitioning altogether. By oversubscribing the available CPU resources of a
node, multiple executors (from various applications) are co-scheduled on the same node
instead.

Figure 2.2c again shows the same cluster as before, but this time with Node-Level Shar-
ing. While the deployment of the drivers (€9 and @)) remains unchanged, the remaining
nodes (@) are no longer exclusive to one application but rather accommodate multiple
executors at the same time. If one executor does not need its full share of the available
resources, the other one will be able to use the additional resources for itself. Nodes @
show a balanced load, while nodes @ and @) show unbalanced distributions with execu-
tors of App 1 and App 2 respectively not using the full share of their allocated resources,
allowing the other executor to use more than their fair share.

Although full parallelism has the potential to increase the overall performance by better
utilizing the available resources if the CPU is not the bottleneck resource [68], interference
between executors may impact performance predictability, and contention for the available

CPU cycles may also negatively affect the overall performance if the load is high.

14

2.5 Workloads in Related Work

This mechanism of oversubscription is commonly used by cloud providers to utilize

unused (but allocated) resources [81, 82].

2.5 Workloads in Related Work

To understand the options of workloads for performance analysis studies of distributed
computing frameworks such as Spark, we surveyed existing work in the domain by ex-
ploring related papers and identified four common types of workload used that can be

categorized into two categories.

Single job & sets of jobs The first category is that of workloads that consist of a
single job or sets of jobs, but do not include any timely structuring, but are rather based
on running individual jobs one after another.

The first and arguably simplest type of workload is to use a single application such
as Word Count, Grep, or Page Rank. Although simple to apply, such a workload may
suffer from bias, as only a specific part of the system is evaluated. A common option
is to evaluate the system at the hand of multiple such applications to counteract this
bias [83, 84].

A more extensive evaluation with varying performance demands is given by benchmark
suites that offer workloads composed of many parts, each of varying characteristics, which
altogether should represent the full, or at least a wide range of possible performance
profiles. These benchmark suites can be further categorized into platform-independent and
platform-specific, with the latter referring to benchmarks suited only for a single platform
or system (e.g., Spark). Platform-independent benchmarks used in related work include
TPC-DS [85], BigDataBench [86], and BigBench [87], while platform-specific benchmarks
include SparkBench [68], SparkBench® [88], and HiBench [89)].

Structured workloads The second category are structured workloads that not only
include the work to be performed but also specify when each job should be submitted.
The first option here is to use (simulations of) real-world workload traces, collected from
the live operation of some production system [22, 23]. The other option is to generate
synthetic workloads, often based on probabilistic distributions and assumptions about the
characteristics of the workload [24, 25, 90, 91].
All of these options found in related work are either only applicable to a single application

or offer no direct control over the inter-application load characteristics and thus are, as

!This is indeed not a typo, but rather two individual benchmarks by different authors but with the
same name.

15

2. BACKGROUND AND RELATED WORK ON DISTRIBUTED
COMPUTING AND RESOURCE-SHARING

mentioned in Chapter 1, not usable for the experiments considered in this work. However,
a study of these existing approaches, especially workload generators, is important for

addressing RQ1 (Chapter 3).

2.6 Related Work on Performance Characterization of Dis-

tributed Computing Systems

There are various studies of the performance characteristics in distributed computing
frameworks, some of which are similar to those considered in this work. Li et al. char-
acterize various Spark workloads based on their performance profiles and resource de-
mands [68]. Marcu et al. and Ahmed et al. compare the performance characteristics of
Spark to those of Flink and Hadoop, respectively [83, 84]. Lastly, Lattuada et al. build a
system for characterizing Spark applications to predict execution times and estimate the

minimal required resources [92].

2.7 Related Work on Automated Experiments

Faciliatation of experiments through automation frameworks is not a novel area of research.
In his 2003 paper, Pawlikowski describes a tool for automated control of simulation exper-
iments in the context of improving the credibility of simulation results [93]. Perrone et al.
follow similar motives and propose an automation framework for experiments in network
simulation studies [94]. Closest to the framework proposed in this work, however, is the
work of Silva et al. on CloudBench [95], a tool for automated experiments to compare the

performance of various cloud providers for a given application.

16

3

ShareBench-Gen: Design and
Implementation of the Workload

(Generator

Main Contribution 3.1 (MC3.1):
Analysis and elicitation of requirements for a workload generator.

Main Contribution 3.2 (MC3.2):
A simple, yet highly versatile conceptual design for a workload generator, appli-
cable for any type of workload represented as discrete work units of predictable
duration.

Main Contribution 3.3 (MC3.3):
An implementation of the workload generator design for OLAP workloads based
on the TPC-DS data set and queries.

There are a multitude of benchmarks for Online Analytical Processing (OLAP) systems,
such as those considered in this work, already available [68, 85-88], so the simplest choice
for a workload would be to run such a benchmark. However, these benchmarks lack two
critical features that are needed.

Firstly, the benchmarks are testing a single application, so do not include the idea of
multiple such systems running concurrently on the same resources. Secondly, even if two
instances of a benchmark were combined, one per application, this workload would still
fail to capture the range of possible inter-application load characteristics, such as, for
example, imbalanced or alternating loads between the applications.

To mitigate this and enable a wide range of experiments that can capture the perfor-

17

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

Table 3.1: Summary of requirements for the workload generator including priority, validation
method, and status in the final design and implementation.

1D Name Priority Method Status

RE3.1 Core Functionality * < [
RE3.2 Visualization * <» [
RE3.3 Variability * < [
RE3.4 Reproducibility * < o
RE3.5 Documentation * S o
RE3.6 Data Independence w S o
RE3.7 Scalability DA SN ®

s *

R
0’0

RE3.8 Query Diversity

Priority: * mandatory | desirable
Method: ® by design | % by design, implementation, and real-world evaluation
Status: @ fully | @ partially | O not met | % depends on data

mance of resource-sharing mechanisms in various load characteristics, we formulated RQ1,
asking how to design and implement a workload generator for performance analysis studies
of distributed resource-sharing mechanisms and policies. In this chapter, we address this
question by following the AtLarge Design Process [30] to propose and evaluate the design
and implementation of ShareBench-Gen, a workload generator based on the TPC-DS data
set and queries.

The design and implementation are guided by a set of requirements, elicited in Sec-
tion 3.1 and summarized in Table 3.1. The table shows the priority, the validation method,

and whether a requirement is met in the final design and implementation.

3.1 Requirements Analysis

We started to elicit the core requirements for the workload generator by using the util-
ity tree technique [32]. Subsequently, we built a simple prototype on the basis of these
requirements and used it extensively. From this use, we collected shortcomings of the
prototype and used those findings to formulate further requirements. The resulting list of
requirements is given below. Mandatory requirements are specified using “shall”, desirable

requirements using “should” [31].

RE3.1 Core Functionality The generator shall generate workloads with various charac-
teristics, controllable through the given parameters.
For performance characterization studies aimed at investigating the effect of various

workload characteristics on the object of study, it clearly is crucial that different

18

3.1 Requirements Analysis

workloads with varying characteristics can be generated. To enable controlled re-
search with specific workload characteristics, it is furthermore essential that the

characteristics in generated workloads can be controlled.

RE3.2 Visualization The generator shall be able to visualize the workload to better un-
derstand the result.
It requires significant effort to understand the characteristics of a workload from a
technical description, like a list of query submissions. A graphical representation is
much more suitable to a human reader [96] and therefore a necessary component of

the generator.

RE3.3 Variability The generator shall be able to generate various workloads with the
same characteristics, varying only in minor details (e.g., choice of queries).
This functionality is needed to support studies in which workloads with certain char-
acteristics are to be evaluated repeatedly but including slight variations to produce

more generally applicable results.

RE3.4 Reproducibility The generator shall always give the same result when given iden-
tical parameters and query data.
Calibration and fine-tuning of the workload to fit the system at hand are essential
processes for many experiments. A generator that produces varying results even for
the same parameters would greatly increase the difficulty of this process or make it

fully impossible.

RE3.5 Documentation The generator shall be documented properly.
Even though the design should be intuitively usable, documentation can help better
utilize the full functionality and avoid issues from a lack of understanding about its

function.

RE3.6 Data Independence The generator should function independent of the type of
underlying query data.
The design is supposed to address the issue of how to generate workloads not only
for this work but further research to come. For that, it is important to keep the
design detached from the underlying data, such that the same design is usable for

experiments with different data.

RE3.7 Scalability The generator should be scalable to any (reasonable) number of appli-
cations, intensity, and total duration.

As mentioned in RE3.6, the design should not only apply for this work. Therefore,

19

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

to enable experiments on various scales, it is important that there are no arbitrary

limitations on the scalability of the workloads.

RE3.8 Query Diversity The generator should compose workloads of as many different
queries as possible.
Composing workloads of only a small number of distinct queries would likely lead to
a bias, as the specific characteristics and performance requirements of those queries
dominate the workload. To get more general representation of the performance of a

system, workloads should include a diverse set of queries.

The following requirements were elicited but are not considered for this work due to the
limited time available. They are instead intended to guide future work of extending the

workload generator design.

RE3.9 Consideration of Query Characteristics The generator should consider perfor-
mance characteristics of queries in its process.
Queries can have highly varying performance profiles [56, 97]. Some queries may, for
instance, read large amounts of data but only do light processing, while others may
read less data but perform much more complex computations. By considering those
characteristics, the generator could (i) provide more detailed information about the

generated workload, and (ii) allow for more control over workload characteristics.

RE3.10 Modeling of Workload Traces The generator should be able to generate workloads
that re-create or model existing traces.
Researchers may want to use real-world workloads for their experiments. There are
numerous workload traces available freely; however, re-running them is often not
easily possible, as the traces are typically limited to information about the start and

end times of queries (e.g., in the Snowflake Dataset [40]).

3.2 Conceptual Design

Figure 3.1 illustrates an example of use of the workload generator, including testing and
fine-tuning of the generated workload in the form of a flowchart.

The example starts with some desired workload, which is expressed as parameters (@)
and passed to the generator (@). The generator uses the parameters to generate a work-
load, as a workload description in the form of a table (@). To understand the generated

workload, it is subsequently visualized (@). The user can then compare this visualization

20

3.2 Conceptual Design

Desired Workload 0> Generator Parameters 0> Generaton

; mode = bursty
burst_count = 2 ?
scaling_factor = 1 Workload Description

query, start, ...
q2, 0, 28

No g3, 1, 31

?
9 5

Workload Visualization

Workload Trace

(7]
System
Under Test

Figure 3.1: Example of use of the workload generator, including stages of testing and fine-
tuning.

to their (mental) image of the desired workload (@), and adapt the parameters to repeat
the process and fine-tune the workload if needed (@).

If the workload matches the expectation, it can be submitted to the system under test
(@), producing a trace of the actual workload run (@). The performance of the system
under test may vary, so the expected query durations used to generate the workload might
not match reality, and thus need to be calibrated based on a scaling factor. For this, the
trace is again compared to the desired and generated workload (@) and the parameters
(typically just the scaling factor) adapted accordingly (@), repeating the subsequent steps

until the actual workload exhibits the desired characteristics.

3.2.1 Generation Process

The design of the generation process itself follows a simple pattern, outlined based on an
example in Figure 3.2.

The example here shows the generation of a workload consisting of two bursts (€)); other
types of workload are generated with the same steps, but possibly in different patterns of
repetition. The set of all available queries @) is filtered for queries for which the execution
duration is in the required range. This subset of all queries @ is then sampled. Depending
on the number of queries needed and the number of available queries, this sampling step
may produce a smaller or larger set (by sampling with replacement) of queries @). These

queries are then “placed” in the timeline! ().

IThis formulation is to better visualize the process. What technically happens is that queries are
assigned a start time and added to a table of all query submissions that constitute the workload.

21

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

(5]

I SR Y i
CJ

Queries

(D}

Queries

-
®
I
]
-

o
N
N
!

Figure 3.2: Conceptual design of the generation process.

3.2.2 Generator Functions

The described generator pattern is realized in various generator functions for workloads

with different characteristics. The proposed design includes three main types of workloads

and corresponding generator functions which are described below.

Random consists of queries that get submitted at fully random times within a given
range. Intensity (i.e., average number of query submissions per time minute), range

of query durations, and overall workload duration can all be configured.

Constant consists of queries arriving in constant intervals. Intensity, query duration,

query duration variability, and query interval variability can all be configured.

Bursty consists of a series of bursts, where a number of queries are submitted concurrently
(i.e., a burst) with no activity in between. The burst intensity, burst count, burst
interval, query duration, inter-burst query start offset, offset per application, and
random variation of many parameters can all be configured. Bursty characteristics
are commonly found cloud computing [24].

It is to note here that not only can a single function be used to create a range of
different workloads based on the parameter values but also composite types are possible
through combining individually generated workloads. We selected this set of workload
types because it can be used to represent many core characteristics found in production
workload traces as found in the Snowflake Dataset [98].

It is vital that all parts of the generator that use randomness allow for explicitly setting

a seed for the random numbers such that the exact same workload can be generated re-

22

3.3 Implementation with TPC-DS Queries

peatedly (e.g., in the case of trying to fine-tune the scaling factor). With these generators,
their versatile configurations, and many possible combinations, a wide range of workloads

with numerous characteristics can be created and tuned at ease.

3.3 Implementation with TPC-DS Queries

We implement the proposed design as a generator for OLAP workloads, based on the
TPC-DS data set and queries. The implementation can be categorized into three parts,

each of which is explained below.

3.3.1 Data and Queries

TPC-DS is an industry standard benchmark for OLAP applications, offering both a data
set generator and a set of queries with various characteristics. The benchmark models a
data warehouse, a common type of OLAP system which can be described as “a copy of
transaction data specifically structured for query and analysis.” [99] As stated at the start
of the chapter, the benchmark alone is not sufficient as a workload as it simply involves
running the set of queries in succession and recording the completion time for each. Yet,
the data set and queries are usable components for the workload generator.

The data set models the sales process of a multi-channel sales organization, structuring
the data with multiple snowflake schemas which are widely used in practice [100], and
can, as a whole, be scaled to various sizes to accommodate the evaluation of a range of
differently scaled systems [56]. The queries of the benchmark focus on representing the
diversity of operations and system requirements apparent in information analysis applica-
tions [85, 101, 102].

3.3.2 Modification of Queries

The number of queries that are included in the benchmark, however, is rather limited,
having 99 queries in total [102]. Their distribution in terms of execution time is furthermore
uneven. Many queries have similar execution times, resulting in certain runtime ranges
being densely populated, while others are scarcely covered or not covered at all [97, 103].
Especially when trying to create workloads consisting of queries with a specific duration,
this set would quickly lead to a low variety of queries.

Some simple studies of query behavior revealed that modifying the range of data included
in the query positively correlates with the execution duration for many queries. Figure 3.3

shows the process that we use on some of the existing queries to mitigate the above-stated

23

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

1 SELECT sr_customer_sk 1 SELECT sr_customer_sk
2 FROM store_returns, date_dim 2 FROM store_returns, date_dim
3 WHERE d_year = 2000 AND ... 3 WHERE ($DATERANGE$) AND

(a) Original query (b) Query with placeholder

3 WHERE (d_date = cast(’2000-04-30’ as date)) AND

3 WHERE (d_year

2000 and d_moy = 1) AND

3 WHERE (d_year = 2000 or d_year = 2001) AND

(c¢) Query with changed date ranges

Figure 3.3: Process of modifying a single query into various new queries of different scales.

[T T
—eo-ql —+-q7 —=ql0 ——ql2 e ql3

60 |-

40

20

Average Execution Time 3]

il | I
1 92 183 274 365
Included Range [days]

Figure 3.4: Average query execution times over 10 iterations for various ranges of included
data.

issue and extend the set of queries to include more queries with various execution times.
Figure 3.3a represents (part of) the original query, where a filter based on the date of entries
can be seen in line 3. We replace this filter for a specific date range by a placeholder, as
shown in Figure 3.3b. This placeholder can then, in an automated process, be replaced
with any range (within the available data) to create a new query with a different scale.
Example results of this replacement process are shown in Figure 3.3c.

To create a sufficiently sized set of available queries, ten queries were modified with the
aforementioned procedure. Of these queries, 50% showed to be scalable in runtime by
adjusting the range of included data. Figure 3.4 shows the average execution times of
these queries plotted against the number of days included in the filtering step. As can be
seen in the figure, the execution times increase with larger ranges of included data. The

subsequent steps use these five queries with date ranges from one day up to two years,

24

3.4 Evaluation

mostly in intervals of one month.

3.3.3 Query Analysis

Before these queries can be used by the generator, information about their expected execu-
tion times must be collected. For this, every query is run 10 times, and the execution time
for each run is recorded. The results are then examined for consistency to check whether
query execution times are largely consistent over multiple runs. Finally, the average times

of the queries are saved to a file for further use in the workload generator.

3.3.4 Generator Functions

The three generator functions, as described in Section 3.2 are implemented as Python
functions, using pandas [104] for the table data structures and sampling of queries.

For all operations that involve randomness (e.g., sampling of queries from the available
options or random variation in start times), the seed for the random generator is set based
on the provided seed parameter (RE3.4). If no seed is given, the current UNIX timestamp
is used instead. This timestamp is also shown to the user to allow re-creating the same
workload.

Many of the available parameters have default values and can thereby be omitted in an
effort to keep the number of required parameters low and increase the ease of use. The
return value is a pandas data frame with columns for the app index, start time, query
name, date range, and expected duration.

The generator suite additionally includes a function to visualize the workload based
on the resulting data frame (RE3.2), and all functions are complemented by docstrings

explaining the available parameters and the proper use of the function (RE3.5).

3.4 Evaluation

We have taken multiple steps to evaluate the functionality of ShareBench-Gen and to
determine whether it meets the requirements stated in Section 3.1. Each of the generator
functions is tested individually at the hand of various parameter configurations. For each
configuration:
* The workload is visualized (RE3.2) and examined to confirm whether it exhibits the
expected characteristics for the given parameters (RE3.1). This process is further

aided by creating a boxplot of query durations.

25

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

* The set of queries used in the workload is analyzed for the number of unique queries

used (RE3.8).

* The same configuration is used twice with the same seed, the results are compared

for equality (RE3.4).

* The same configuration is used twice with different seeds, the results are compared
for deviations (RE3.3).
Lastly, the set of all generated workloads is analyzed for diversity of characteristics (RE3.1).
While initial designs of the workload generator were insufficient for some of the require-
ments, the implementation of the final design fully meets all mandatory requirements and
at least partially meets all desirable requirements. For some requirements, the underlying
query data can influence whether they are met or not, but the generator design itself is
not limiting. Table 3.1 lists this information for all requirements along with the type of

evaluation used for each requirement.

3.5 Limitations

We have identified three issues with the proposed design and implementation of ShareBench-

Gen, which could possibly limit its functionality and usability.

Small set of queries Due to the limited time available for this work, only ten queries
have been adapted to include a modifiable date range, and of those ten only five proved
to be useful for the workload generator. With that, the generated workloads only have
a small variety of query types, possibly limiting their scope in testing all aspects of an

OLAP system.

No consideration of performance interference The number of concurrent queries
for a single application likely affects the performance of all those queries and increases
their execution times. The current model does not include such a consideration, possibly

affecting workload characteristics and the accuracy of the visualization.

Inefficient implementation The implementation of the generator functions was not
aimed at efficiency. Likely, much more efficient solutions are available. However, the
current implementation is reasonably fast, even for larger workloads, on most common

systems.

26

3.6 Future Work

3.6 Future Work

While considering the current design and implementation, we have identified multiple

possible extensions to ShareBench-Gen that could be addressed in future work.

Consideration of query characteristics In the current form, all queries are consid-
ered equal, only differing in their execution duration. However, as stated in RE3.9, queries
can have highly varying performance profiles. To provide more detailed information on
the generated workloads and extend the level of control over the generation process, the
generator should be extended to support the consideration of query characteristics. For

this extension, a deeper, nontrivial analysis of query performance would be necessary.

Interpolation of queries Figure 3.4 suggests a functional correlation between the num-
ber of days included in a query and its execution time. While currently only ranges for
which the query has explicitly been tested for are used in the workload generator, an ex-
tension of the work could try to model this relation to give more fine-grained control over
the desired query duration without requiring more query runtime evaluations by interpo-
lating queries between the tested ranges. This extension is not elicited as a requirement
as it is specific to the set of queries used in this implementation of the generator and not

generally applicable to the design.

Modeling of workload traces Additionally to the current design, where a workload is
described by a range of parameters and then generated from scratch, the generator could
be extended to also include the option to re-create a workload from a trace (RE3.10).
Extending the functionality of the workload generator to enable re-creating a workload of
similar shape from a trace would greatly extend its use cases and provide a middle ground
between synthetic and real-life workloads. As some workload traces further include meta
information, like data read and data written by the query, this extension could additionally

be combined with the consideration of query characteristics (RE3.9).

3.7 Summary

In this chapter, we addressed RQ1 through the design (MC3.2) and implementation
(MC3.3) of ShareBench-Gen, a workload generator for performance analysis studies of
distributed resource-sharing mechanisms and policies. We guided the process by a list
of requirements that we identified as necessary for a workload generator. (MC3.1) The

implementation uses the TPC-DS data set and queries to generate OLAP workloads, but

27

3. SHAREBENCH-GEN: DESIGN AND IMPLEMENTATION OF THE
WORKLOAD GENERATOR

the conceptual design of the generator is applicable to any type of workload that can be
represented as work units with limited and predictable durations.

ShareBench-Gen is designed with performance characterization experiments in mind.
It is centered around three generator functions that together enable generation of work-
loads with a wide range of characteristics. Its features should support various experiment
workflows, with the options to visualize the generated workloads and directly control the
randomization of the process for reproducibility and fine-tuning of workloads.

We successfully used ShareBench-Gen to generate numerous workloads that support the
experiments discussed in Chapter 5 and used the gained experience to iteratively improve

the design and implementation of the generator.

28

4

ShareBench-Base: Design and
Implementation of the

Infrastructure Framework

Main Contribution 4.1 (MC4.1):
Analysis and elicitation of requirements for an infrastructure framework for
automated real-world performance analysis studies.

Main Contribution 4.2 (MC4.2):
A generalized, process-based conceptual design for an infrastructure framework
for automated real-world performance analysis studies.

Main Contribution 4.3 (MC4.3):
A structural topology of required components for performance analysis studies
of Spark SQL on Kubernetes.

Main Contribution 4.4 (MC4.4):
An implementation of the infrastructure framework design for Spark SQL on
Kubernetes.

Initially, this work was purely concerned with evaluating distributed resource-sharing
mechanisms and policies. However, it quickly became apparent that the infrastructure
needed for such experiments is complex, requires numerous heterogeneous parts to work
together, and involves many steps even for simple experiments.

The idea of automating frameworks that streamline experimentation processes has been
considered by other research in similar areas [93-95]. It soon became clear that an au-
tomated infrastructure framework could also here greatly facilitate the process and help

future research (and researchers) to focus on the experiments themselves by reducing the

29

4. SHAREBENCH-BASE: DESIGN AND IMPLEMENTATION OF THE
INFRASTRUCTURE FRAMEWORK

Table 4.1: Summary of requirements for the infrastructure framework including priority,
validation method, and status in the final design and implementation.

1D Name Priority Method Status
RE4.1 Core Functionality * < [
RE4.2 Configuration * 3 d
RE4.3 Documentation * < [
RE4.4 Portability * < o
RE4.5 Automation A <> ®
RE4.6 Extensibility A SN d
REA4.7 Use of Common Components PAS SN o

Priority: % mandatory | ¥ desirable
Method: % by design | % by design, implementation, and real-world evaluation
Status: @ fully | @ partially | O not met

time and effort needed to install, set up, and coordinate the infrastructure, initiate the
experiments, and analyze the results. We therefore formulated RQ2, asking How to design
and implement an infrastructure framework for automated real-world performance analysis
studies of distributed resource-sharing mechanisms and policies.

In this chapter, we address RQ2 by following the AtLarge Design Process [30] to propose
the design and implementation of an automated infrastructure framework, ShareBench-
Base. Although ShareBench-Base is geared towards Spark SQL on Kubernetes, it’s core
architectural design should be equally applicable to various other compositions. The
requirements addressed by the design and implementation are summarized in Table 4.1,
which includes information about the priority, the validation method, and whether a
requirement is met in the final design and implementation.

The framework assumes access to a Kubernetes cluster as a starting point. If such a
cluster is not available, the Continuum framework by Jansen et al. [105] can be used to

automatically deploy an emulated Kubernetes cluster on a single or multiple machines.

4.1 Requirements Analysis

We follow the same process for eliciting requirements as described in Section 3.1, starting
with the utility tree technique before building a prototype and formulating additional
requirements through the experience gained from its use. The resulting list of requirements

is given below.

RE4.1 Core Functionality The framework shall set up and configure the infrastructure

needed for the proposed experiments.

30

4.1 Requirements Analysis

The installation and configuration of the required infrastructure for experiments such
as those considered in this work is not trivial. The core objective of this framework

is to relieve researchers of the associated effort and time needed.

REA4.2 Configuration The automation shall not reduce the options for configuration
A possible drawback of automation and abstraction is the loss of control over the
abstracted components.! However, especially in a research setting it cannot be
assumed that the configuration envisioned in the design will be applicable to all

users.

RE4.3 Documentation The framework shall be documented properly.
The components and processes of the framework, while ideally less technical than
those it abstracts, are still highly technical. To be used to its full extent by re-
searchers that did not follow the design of the framework documentation is essen-
tial. Good documentation furthermore facilitates extensions and modifications to

the framework.

RE4.4 Portability The framework shall be portable (i.e., movable) between different
hosts.
Experiments may be performed from various host machines, and the framework

should be able to accommodate this.

RE4.5 Automation The framework should offer automation and abstraction for all com-
mon processes that go beyond simple commands.
Many experiments require extensive processes to initiate, monitor, and analyze.
When repeated often enough, time spent on these processes quickly accumulates to
nonnegligible amounts, reducing the time that can be spent on subject of research.

Automation of such processes is therefore vital for the objective of the framework.

RE4.6 Extensibility The framework should be easily extensible for more or different com-
ponents.
Although the framework is primarily designed to support the type of experiments
performed for this work, its benefit to other researchers is greatly increased through

support for extensions, as those may facilitate numerous other types of experiments.

REA4.7 Use of Common Components The framework should use commonly known com-
ponents where possible.

By using commonly known components, the framework can be understood easier by

! Abstractions imposing fixed assumptions for lower-level considerations has already been identified as
an issue in 1971 [106].

31

4. SHAREBENCH-BASE: DESIGN AND IMPLEMENTATION OF THE
INFRASTRUCTURE FRAMEWORK

A
Installation read-» Config

install, Legend
setup
Compute Cluster Main Host
Measurement | Tools use Component
Infrastructure
. Resource Storage .
Iiﬂ Fil IEI
Recipe Manager | Infrastructure e
i) . collect —>
configure, submit, monitor Interaction
=2 [C B - altulubed sintuinteiuiai il eiuintulel sibeiuiety i~ utiuietulntuintaisioiis N R
- S— o _ D : .
' Running --»<_ Collection i |Process Flow
; Experiment :

...

Figure 4.1: Processes of the framework and their interaction with the infrastructure compo-
nents.

someone not involved in the development. With that, the framework is likely easier

to use and easier to modify or extend.

4.2 Conceptual Design

The design of ShareBench-Base can be separated into two parts; a generalized process
structure defining the high-level functioning of its main features (Section 4.2.1) and an
infrastructure topology highlighting the needed components and their interactions (Sec-

tion 4.2.2).

4.2.1 Process Structure

The design of the framework is structured into processes, each responsible for some part
its functionality. A high-level overview of the processes that constitute the framework is
given by Figure 4.1 and elaborated on in the following.

The installation process @ is responsible for setting up the tools, storage infrastructure,
and measurement infrastructure required for the operation of the framework. For this, the
configuration file(s) provide the necessary system information, such that the processes
themselves can function independently of the specific configuration, and changes in the
configuration do not require changes in the framework (RE4.4).

Once the installation is completed and the system is configured, experiments can be

run through a series of processes. The first process (@) is responsible for reading an

32

4.

2 Conceptual Design

Kubernetes Node

Spark Driver Pod

Spark Program

Workload Execution

Metric Collection

Main Host

F

® Hive Metastore

© Postgres DB

Kubernetes Node

Spark Executor Pod

Spark Program

Task Execution

v

| @ Minio Server
Y ‘ @ Dependecies
© Dependecies | (1) Influx DB
(G] Telegraf

(G] Telegraf

Legend

General i —
Component Metrics Workloads Compatibility USes

Figure 4.2: Component deployment including the Main Host and Kubernetes Nodes with
various operational roles.

experiment recipe (or multiple recipes), configuring the cluster according to the recipe,
submitting the work to the cluster, and monitoring the progress.
Once the work is completed, the results are collected using the installed tools ((@).

Finally, the analysis process @ can be used to examine and analyze the results.

4.2.2 Infrastructure Topology

Figure 4.2 shows the topology of the infrastructure components required to support the
processes outlined in Section 4.2.1 and perform the proposed experiments with SparkSQL
on Kubernetes. The figure gives a snapshot of a running experiment, namely with Spark
pods active in the Kubernetes nodes. All arrows in the figure indicate that a component
uses the other and imply that both components are set up to function together.

The Spark program running in the driver nodes is composed of two parts; the first is
responsible for executing a workload (€)). SparkSQL requires external storage for both
meta- and regular data. For this, the main host runs a Hive [107] server (@), which in

turn requires a database for its operation (@), and an external storage server ().

External storage For external storage, a cloud storage provider like Google Cloud Stor-
age [108] or Amazon S3 [109] would be valid options that require relatively little effort

to set up. However, these options can not only get pricey for storing large amounts of

33

4. SHAREBENCH-BASE: DESIGN AND IMPLEMENTATION OF THE
INFRASTRUCTURE FRAMEWORK

data but also, more importantly, may reduce the reproducibility of experiments as there
is little control over where and how the data is stored.

To avoid the associated cost and have more control over the external storage, a local stor-
age service deployed as a Docker container is used instead. Here, we selected MiniO [110)]
due to its simplicity and similarity to typical cloud storage providers (specifically Amazon
S3). There are alternatives to MiniO [111, 112], however, they do not offer any apparent
advantages.

Access to the external storage server, both by the program and by the Hive server, is
not possible out-of-the-box but requires additional Java dependencies (€)). In addition,
these dependencies must be present in a specific version compatible with the remaining

componen‘cs.1

Metric collection While the infrastructure as explained so far is already sufficient to
run workloads, the experiments further require the collection and storage of metrics. This
is done in part by the second part of the program code (€)) which collects information such
as query execution times and stores this information as a workload trace on the external
storage server @).

The first concept for collecting system performance metrics, like CPU and memory
usage, was to add periodic statements in the Scala program code that, using a library, get
the current system metrics and save this data to the external storage. This approach avoids
having to install any additional tools directly in the machines of the cluster. However,
collecting system metrics from within Scala required more effort than initially assumed,
and adding extensions for more metrics would require knowledge of the program code and
structure. We therefore instead decided to use Telegraf [113, 114], an open source tool
specifically designed to collect system metrics which offers many plug-and-play extensions
for more metrics.

Telegraf is deployed on all nodes of the cluster (@) as a service. These services report
their data to an Influx DB server, which is a time-series data base, running alongside the

remaining storage infrastructure on the main host (@J).

LYet, this version is usually not specifically declared anywhere as it is the dependency of a dependency
of a dependency of a [...]. Fortunately, implementing the infrastructure gave plenty of practice for this
process, as many other dependencies needed for the workload-running code were accompanied with the
same issues.

34

4.3 Implementation for Spark SQL on Kubernetes

4.3 Implementation for Spark SQL on Kubernetes

We built an initial prototype based on bash scripts for all automation processes. Bash
scripts do not require any compilers or interpreters to be installed, and thereby seemed
appropriate for a simple automation framework. Although mostly functional, the scripts
quickly became very complex in an effort to support increasingly more features. Further-
more, discussions with colleagues showed that, while still widely popular [115], bash is
poorly understood and is disliked by many. Taking this into consideration, we formulated
REA4.7 (Use of Common Components) and reworked the design in a new iteration. The

final design consists of the following.

1. Scala program code that supports generation of the data set, execution of indi-

vidual queries, and execution of workloads with subsequent metrics collection.
2. Python scripts for all automation processes.

3. A YAML configuration file for all configuration options needed for the installation

and operation of the framework.
4. A recipe book format for defining experiments as YAML files.

5. Various other components and files needed for the operation.

4.3.1 Spark Program

While Spark itself is written in Scala, Spark applications can be written in both Scala and
Python. Although Python may be easier to read and write, ShareBench-Base uses Scala,
as (1) many Spark concepts and functions are closely related to Scala equivalents and are
less natural to use in Python, (ii) Performance of Spark programs written in Python is
typically worse [116] and could thus affect the accuracy of measurements, and (iii) support
for new Spark features typically comes to Scala first before being translated to Python.
Additionally, as Scala is a compiled language, errors in the code can be identified earlier,
namely, at compile time. For an environment where the code is not run locally but rather
deployed remotely in, for example, a Kubernetes cluster, this can lead to significant time

savings in the development process.

35

4. SHAREBENCH-BASE: DESIGN AND IMPLEMENTATION OF THE
INFRASTRUCTURE FRAMEWORK

4.3.2 Script Structure

All scripts are written in Python and use existing Python libraries for their functionality
wherever possible (RE4.7). The scripts are designed with a modular structure such that
common operations are clearly abstracted into functions, and automation processes are
compositions of these functions. Many of those functions can be used either as part of an
automated process or called directly. An example of this composition is the script for run-
ning an entire experiment composed of subsequent program runs with various workloads
or mechanisms. This script internally uses a function to run a single workload, but the
same function can also be called directly by the user from the command line.

This modular structure, which embraces variability in the use cases of the features,
requires careful consideration and additional planning in the development. It is usually
easier to write many specific single-use functions than to think about reusability of code.
However, with this structure, new components can be easily added (RE4.6), as only the
function that uses the components needs to be updated, but more complex processes are
still automated (RE4.5). Furthermore, by using abstractions with clear purposes, code
readability and maintainability are typically better than for other alternatives.

Performance can also be a factor for not choosing a modular design; fewer optimizations
due to more universally usable functions and additional overheads due to more function
calls may have a negative impact on program performance. For ShareBench-Base, however,
this is not an important factor, as script performance is not critical and the program

runtime is likely to be dominated by the Spark applications.

4.3.3 Configuration

As illustrated in Section 4.2.2, many of the components need to be configured not only
to work together but also to work properly on the specific system used. One example of
this is the IP address of the storage servers, which depends on the IP address of the host
machine, but needs to be known to all components that access the storage.

To avoid hard-coded options, which are easier to write but would not allow running the
framework on various hosts without changes in many locations, all such parameters are
defined in a YAML configuration file that is used by most components of the framework.
YAML is favorable over other serialization languages, such as JSON or XML, for use in
ShareBench-Base because it is the serialization language used by Kubernetes and therefore

likely already familiar to many users.

36

4.3 Implementation for Spark SQL on Kubernetes

Not all components support dynamic lookup of configuration parameters from a gen-
eralized file but instead only take configurations from a component-specific file. To use
the aforementioned configuration file also to set the options for these components, their
configurations are instead defined in so-called template files. These template files contain
all the settings needed, but use placeholders for the parameters defined in the general
configuration file. Once those parameters are set properly, a script takes care of filling out
the template files and moving them to appropriate locations for the changes to take effect
even for those components. With this approach, the configuration options of the individ-
ual components do not get limited (RE4.2), since the options can be easily customized,
added, or removed in the template files, yet the options needed for the functionality of the

infrastructure still get applied automatically (RE4.1, RE4.5).

4.3.4 Experiments

A simple approach to define automated experiments would be to write experiments directly
in code, such as a program that calls the appropriate functions to run workloads and collect
results. Although this method was used in an initial version of ShareBench-Base due to its
simplicity, it has some disadvantages. Most notably, it hurts the readability of experiment
definitions, requires a lot of redundant writing of function calls and helper code, and offers
no easy way to change the process with which experiments are conducted without changing
all experiment programs individually.

Instead, experiments can be specified as so-called recipes that define parameters such as
workload, mechanism, and number of applications. Multiple recipes are then grouped into
a single YAML file, called a recipe book. A whole recipe book can be run automatically
through a script, without any user interaction beyond the starting command required,
executing all experiments defined in the recipes and collecting the results. Not only is this
in accordance with RE4.5, it also greatly facilitates running larger sets of experiments
where the total duration can easily exceed multiple hours and allows easy customization
and extension of the experiment process (RE4.6).

The format of recipe books and recipes themselves is highly versatile and allows for
many different experiment types, as all parameters can be specified in a list with multiple
options to easily test all possible combinations. Some example experiments include char-
acterizing the performance of a single mechanism based on various workloads, comparing
multiple mechanisms for a single workload, or exploring the performance characteristics

of a mechanism for varying numbers of applications.

37

4. SHAREBENCH-BASE: DESIGN AND IMPLEMENTATION OF THE
INFRASTRUCTURE FRAMEWORK

1 default: 9 recipes:
2 mechanisms: 10 - workloads:
- static 11 - workload-1
1 - dynamic 12 mechanisms:
- shared 13 - shared
6 num_apps: 14 - static
7 = 2 15 - workloads:
8 = 3 16 - workload-2a
17 - workload-2b
18 - workload-2c
19 mechanisms:
20 - static
21 num_apps:
22 - 2
23 - workloads:
24 - workload-3

Figure 4.3: Example of a recipe book with default values (left) and three recipes (right).

Table 4.2: Summary of metrics collected by the infrastructure framework.

Metric Collected By Usecases
Workload Trace Spark Program +/t
CPU Usage (Per Node/Global) Telegraf *
Memory Usage (Per Node/Global) Telegraf *
Allocation of Executors Spark Program +

Usecases: 4 overall performance | ¥ system utilization | ¥ dynamic allocation

Figure 4.3 shows an example recipe book containing three recipes. The default keyword
can be used to define default values for all (or some) properties. If a recipe does not specify
some properties, these default values are used. The recipes keyword defines a list of one
or more recipes. Each recipe is defined as lists of values for the properties. Executing a
recipe encompasses executing all possible combinations of parameters. The first recipe in
the list would therefore execute workload-1 with mechanisms shared and static each

time with 2 and 3 apps (as defined in the default values).

4.3.5 Metrics

Table 4.2 gives a summary of all metrics that can currently be collected as part of the
framework, including information about how they are collected and their potential use-
cases. Each entry is briefly explained in the following. It should be noted that this list can
be easily extended with any metric that can be collected using Telegraf, since the Telegraf
infrastructure is already present.

Workload traces are collected by the Spark program, logging start and completion times

38

4.4 Evaluation

for every query submission. This data is sufficient to calculate the number of active
queries at any time, create visualizations of the workload, and calculate metrics such as
the distribution of query execution times.

CPU usage is collected by reading the /proc/stat file in 10-second intervals [117]. Each
measurement then represents how the CPU was used since the last measurement. The
usage is broken down into many fields, including idle usage, which can be used to calculate
the overall utilization, but also usage by the system and usage by the user. For multicore
systems, the capacity of all cores is combined. So, a situation where a single core of a
quad-core system is fully used and the rest are idle would show a CPU usage of 25%.

Memory usage is collected in a similar fashion, recording not only the total memory
used but also many other more detailed metrics [118]. The raw measurements consist of
absolute values, but can be converted to fractions of the total memory if needed.

For collecting the allocation of executors, the Spark program is configured to log events
like changes in the number of requested executors, registrations of new executors, and
terminations of unused executors. This log can then be parsed automatically to plot the

requested and registered executors for each application.

4.4 FEvaluation

We have tested ShareBench-Base after each design iteration to identify shortcomings and
areas for improvement by extensively using it to set up, conduct, and analyze the ex-
periments discussed in Chapter 5. The framework was furthermore used for a research
project by Sudnicina [119] through which we were able to uncover and subsequently address
various minor issues. Table 4.1 summarizes the information about whether or not each
requirement is addressed by the proposed design and implementation. The requirements

that are not or only partially addressed are briefly discussed in Section 4.5.

4.5 Limitations and Future Work

We identified multiple limitations of the proposed design and implementation of ShareBench-

Base, many of which could be addressed in future work.

Limited automation Most of the complex, or simply cumbersome, processes are suc-
cessfully automated. However, there are still processes remaining that have to performed
manually. Especially monitoring of a running workload or experiment is rudimentary

and limited to whether or not the run has finished. Future work could attempt to fully

39

4. SHAREBENCH-BASE: DESIGN AND IMPLEMENTATION OF THE
INFRASTRUCTURE FRAMEWORK

address RE4.5 by extending the automation processes and providing support for better

monitoring.

Complex configuration Extensive parts of the configurable options for the framework
are grouped in the generalized configuration file. The configurations for the mechanisms,
however, can only be modified in one of the Python scripts, limiting the options for anyone
not familiar with the code base. Future work should devise a better method of specifying

and configuring resource sharing mechanisms to fully address RE4.2.

Missing interface for extensions Although the framework is designed with extensi-
bility in mind, the development of extensions requires a thorough understanding of the
existing implementation, as the extensions would need to be built directly into the existing
code base. In future work, the extensibility aspect could be further improved by devel-
oping an interface abstraction for additional components to fully address RE4.6. In its
current form, the infrastructure is more a proof-of-concept than a generalized and easily
extensible framework. Yet, many features are either already present in a simplified form

or could be added with relatively little effort.

Specialized implementation While the design of the framework is kept mostly gen-
eralized and should be applicable to compositions with other components, the implemen-
tation, naturally, is specific to Spark on Kubernetes. The Spark program is furthermore
written specifically for the type of experiments considered in this work, namely experi-
ments with Online Analytical Processing (OLAP) workloads. Further work could address
these issues and try to extend the implementation to also support different Application
Frameworks (AFs) and Resource Managers (RMs) for current use case or even add support

for other use cases in general.

Metrics The current list of collectable metrics already enables a range of analyses. How-
ever, more metrics may be helpful or necessary for experiments that go beyond those con-
sidered in this work. One example are metrics concerned with the operation of Kubernetes
and its scheduling decisions. Future work could encompass a systematic survey of exist-
ing work to determine other performance metrics used in experiments and subsequently

extend the framework for those metrics.

Compatibility The implementation has been tested by multiple users; however, all
tests were performed on very similar systems, giving only limited information about the

compatibility with other environments.

40

4.6 Summary

Scalability Although the design and implementation of ShareBench-Base do not have
any apparent bottlenecks to its scalability, the framework has not been tested for clusters
with more than 15 nodes. With that, it is unclear whether the design and implementation

would scale to larger systems.

4.6 Summary

In this chapter, we addressed RQ2 by proposing the design and implementation of
ShareBench-Base, an infrastructure framework for automated real-world performance
analysis studies of distributed resource-sharing mechanisms and policies. We identify
a topology of required components (MC4.3) and implement ShareBench-Base for Spark
SQL on Kubernetes (MC4.4) but propose a generalized list of requirements (MC4.1)
which we turn into a conceptual design (MC4.2) that should be applicable to other com-
positions.

The versatile design of ShareBench-Base allows for many uses cases, even going beyond
those considered in the design process. In cases where the design or implementation is in-
sufficient, the modular nature and use of commonly known components (such as Python)
make it possible to adapt the design accordingly. Experiments can be defined in a user-
friendly way as recipe books. The format of these books is intentionally designed to facil-
itate various types of experiments. The framework is highly automated, and consequently
greatly facilitates the process of conducting experiments, allowing researchers to shift their
focus more on the experiments themselves. With this automation, the framework could
even be promising for use in a CI/CD pipeline.

For us, ShareBench-Base successfully enabled and facilitated conducting a wide range

of experiments. The experiments and our findings are discussed in Chapter 5.

41

4. SHAREBENCH-BASE: DESIGN AND IMPLEMENTATION OF THE
INFRASTRUCTURE FRAMEWORK

42

Performance Characterization of
Resource Sharing Mechanisms of

Spark on Kubernetes

Main Finding 5.1 (MF5.1):
Dynamic Partitioning leads to significant overheads from allocating and regis-
tering resources.

Main Finding 5.2 (MF5.2):
Dynamic Partitioning does not support preemption or other fairness mecha-
nisms, leading to drastic performance differences between applications, even
with near identical workloads.

Main Finding 5.3 (MF5.3):
When the concurrent load in the cluster is unbalanced, Node-Level Sharing can
significantly improve performance due to better resource utilization.

Main Finding 5.4 (MF5.4):

If the concurrent load in the cluster is high, Node-Level Sharing experiences
saturation leading to a degradation of performance.

Main Finding 5.5 (MF5.5):

Among the studied mechanisms, Static Partitioning has the best performance
predictability, as interference between applications is minimal.

In this chapter we demonstrate the capabilities of ShareBench-Gen (Chapter 3) and

ShareBench-Base (Chapter 4) by using both components to perform a series of experiments

to address RQ3, asking what are the performance characteristics of the resource-sharing

mechanisms of Spark on Kubernetes. The resource-sharing mechanisms and workload type

43

5. PERFORMANCE CHARACTERIZATION OF RESOURCE SHARING
MECHANISMS OF SPARK ON KUBERNETES

Table 5.1: Technical specifications of the experiment infrastructure.

(a) Specifications of the physical hosts.

Host CPU Cores RAM Storage
1 2x Intel Xeon Silver 4210R 20 256 GB 4TB SATA SSD
2 2x Intel Xeon Silver 4210R 20 256 B 4LB SATA SSD,

2TB NVMe SSD

(b) Specifications of the virtual machines.

Provider Cores RAM Storage

gemu 4 32GB 48 GB
Host 1 < > Host 2
1 Gbps
SATA SSD Ethernet SATA SSD NVMe SSD

;i f N, S

5x Virtual Machine 5x Virtual Machine Minio Server

Hive Metastore

—
—

|
Postgres DB

Influx DB

Figure 5.1: Infrastructure topology used for experiments. For each software component, the
arrow indicates the used storage device.

are described in Chapter 2 (Sections 2.4 and 2.2, respectively).

5.1 Experiment Setup

We conducted all experiments with a 10-node Kubernetes cluster, emulated on two physical
machines using Continuum [105]. Table 5.1a provides the hardware specifications of the
physical machines, Table 5.1b the specification of the virtual machines, and Figure 5.1 the
topology of the physical and virtual machines and additional services. Experiments were
also performed with a larger cluster of three hosts, however, due to technical issues with

the available hardware, the experiment size was reduced to that of this setup.

The exact Spark configurations used for each of the mechanisms are given in Appendix A.

44

5.2 Workloads

5.2 Workloads

To identify common characteristics of workloads and get an understanding of relevant
ranges of query duration, we analyzed workload traces from the Snowflake Dataset [98]
based on their core characteristics. We then augmented the set of findings with more
workloads to include additional characteristics that are likely to exploit the strengths and
weaknesses of individual mechanisms and facilitate meaningful findings on their perfor-

mance characteristics.

5.2.1 Workload Types

We selected four types of workload that exhibit considerably different characteristics. The
workloads are shown in Figure 5.2 and explained below, along with hypotheses for the
performance of the mechanisms for each type of workload. All workload plots follow the
style introduced in Figure 2.1, with time on the z-axis and the number of active queries
on the y-axis. Note that individual applications are slightly offset in some of the figures
to aid in the visualization of coinciding lines. The figures furthermore only show a short
excerpt of the workloads while for the experiments workloads of more than 30 minutes

were used.

Bursty load In bursty workloads, which are commonly found in cloud computing en-
vironments [24], many queries are submitted concurrently in a so-called burst, with no
activity in between. Figure 5.2a shows a workload with three applications, each having a
burst of 5 queries every 180 seconds. Notably in this workload: the individual apps are
offset so that only a single app is active at any given time. Figure 5.2b changes this by
shifting the individual applications so that their bursts overlap perfectly.
Non-overlapping bursts should especially suit Node-Level Sharing, and, if there is a long
enough period of inactivity between bursts, also Dynamic Partitioning. Static Partitioning
will likely exhibit poor resource utilization as only one application is active at any given
time and the remaining resources remain unused. Overlapping bursts should inverse the
picture; Even with Static Partitioning, all resources of the cluster are utilized during the
bursts of activity. Dynamic Partitioning could perform similarly to the former; however,
overheads for executor allocation could negatively impact the performance. Node-Level

Sharing, on the other hand, could suffer from high contention.

45

5. PERFORMANCE CHARACTERIZATION OF RESOURCE SHARING
MECHANISMS OF SPARK ON KUBERNETES

—App1l --App2 - App3 —App1l --App2 - App 3
T T T T T] T T T T [T 1T
E [o=ty B E [L] .
g 40 it) 5§ 4 |
= | | 'H H | = 4
e ! E kt c I g)
2 2p oY g2 z .
< O | \. N T Y Y M M I M <E: 0 Ll \. | .\ ! .\ T R .\ | .\ \. L
0 100 200 300 0 100 200 300
Time [s] Time [s]
(a) Bursty Non-Overlapping (b) Bursty Overlapping
—App 1 --App2 - App 3 \—Appl --App 2 -~ App3\
T T T T T 1 T T T T] T T T T [T T 1T T T T T T [T T T T T T T T T] T T T
[75) 4 [. - 2 - 3 i w0 4 [" LTI N
= T WE 3 - : N
e 2 ' I N
< O T | I A T < 0 T T R B R NI BN
0 100 200 300 0 100 200 300
Time [s] Time [s]
(c) Constant (d) Random

Figure 5.2: Types of workloads used in the experiments.

Constant load In constant workloads, all applications have a constant load of active
queries (with a given intensity). Figure 5.2c shows an example with three apps and an
average intensity of 3.

Constant workloads are likely best suited for Static Partitioning, as the load in the clus-
ter is constantly even between applications. Dynamic Partitioning should again perform
similar, as resources are likely going to be acquired at the start and never released as the

load remains constant. Node-Level Sharing could again suffer from contention, depending

on the overall load of the cluster.

Random load In random workloads, queries are distributed in a fully random fashion,
resulting in a workload with highly variable characteristics. Also here, the intensity can
be chosen. Figure 5.2d shows such a workload for three applications with an intensity of
2.5.1.

If the intensity of the random workload is high enough for apps to constantly hold
on to their resources even in Dynamic Partitioning, both of the partitioning mechanisms

will likely perform similarly. For lower intensities, however, Dynamic Partitioning could

!The intensity is here, unlike with constant workloads, not directly visible from the plot. Yet, it is not
an arbitrary measure, but rather the average number of queries submitted per minute and application

46

5.2 Workloads

Table 5.2: Summary of experiment instances. The generator type is indicated in the instance
name. The parameter values most significant for the experiment goal are highlighted in bold.
In the specification of burst intervals, n stands for the number of apps.

Gen. Parameters

Title AO I QD BI Goal(s)
Bursty Non- Compare mechanism performance at a
Overlapping 60 4 [45,65] 60n fully unbalanced load.
Bursty Non- Evaluate performance of Dynamic Par-
Overlapping 90 4 [45, 65] 90n titioning in ideal conditions (30 seconds
with Delay of no activity between bursts).

(i) Compare mechanism performance at
Bursty . 0 4 [45,65 60n fxfully bala?nced load, and (ii) 1nve§t1gate
Overlapping impact of interference by comparison to

Bursty Non-QOverlapping.

Establish a baseline for evaluation of
Constant 0 4 [50, 70] fairness with Dynamic Partitioning.
Constant 1 4 150, 70] Determine effect of offset app start times
with Offset ’ on fairness with Dynamic Partitioning.
Random 0 1.5 [30, 120] Compare mechanism performance at low
Low overall load.
Random Compare mechanism performance at
Medium 0 4 [30,120 medium overall load.
Random Compare mechanism performance at
High 0 6 [30, 120] high overall load.

AO: app offset | I: intensity | QD: query duration | BI: burst interval

provide a performance benefit due to better resource utilization during periods of uneven
load. Node-Level Sharing could achieve good performance when the load is unbalanced,
but this benefit could be counteracted by performance penalties from contention when all

apps are active with a high load, making random workloads an interesting point of study.

5.2.2 Experiment Instances and Goals

Table 5.2 gives a summary of the workload instances used in the experiments. The table
includes the relevant generator parameters and a brief description of the experiment goal(s)
for each instance. The title of each workload instance indicates the type of generator used.
Generator parameters that are not relevant for the key workload characteristics are omitted

for better readability. Some parameters do not apply to all generator types and are left

47

5. PERFORMANCE CHARACTERIZATION OF RESOURCE SHARING
MECHANISMS OF SPARK ON KUBERNETES

empty for those instances.

5.2.3 Workload Calibration

For each workload, we performed a calibration of the query scale factor to match the ac-
tual and desired workload performance based on the performance with Static Partitioning,
which we selected as the baseline mechanism due to its simplicity and predictable perfor-
mance. This calibration is necessary due to the differences in system performance between
measuring queries individually (as described in Section 3.3.3) and running multiple queries
concurrently. We then use the exact same (calibrated) workload for all mechanisms under

evaluation.

5.3 Findings

This section discusses the most relevant results and findings of the experiments. All
boxplots are modified boxplots [120], points with values higher than Q3 + (1.5 x IQR)
or lower than @1 — (1.5 x IQR), where @; and Q3 are the first and third quartiles,
respectively, and IQR is the interquartile range calculated as QY3 — @1, are plotted as
outliers such that the whiskers extend only to the minimum and maximum data values
not considered outliers.

All experiments have been performed with a workload duration of at least 30 minutes
and average query durations of around 60 seconds. The results exclude a warm-up period
1

of 3 to 5 minutes, after which the performance typically stabilized for all mechanisms.

All values mentioned in the discussion are rounded to full seconds.

5.3.1 Dynamic Partitioning Performance Suffers from Overheads

Figure 5.3a shows a modification of the aforementioned non-overlapping bursty workload
where a 30-second delay between the bursts of applications has been added. With Dy-
namic Partitioning configured such that applications release resources after 15 seconds of
inactivity, this workload represents highly favorable conditions for the mechanism; appli-
cations have enough time to release their resources after a burst, and only one application
is active at the same time such that it can acquire all available resources.

Figure 5.3b shows a comparison of the performance of all three mechanisms for a 30-

minute period of this workload. Each mechanism is represented by a boxplot, which

!Experiments showed that performance of all mechanisms is typically much worse in the first few
minutes than after that. To focus on the most meaningful results, this warm-up period is excluded.

48

5.3 Findings

—App1 --App2 - App3 w T

80 - ‘

I I L L O L L NS I o | |
£a) e Thas R e T I -1]
& ! o 2
22| R o att S E I o B |
S | ! yoo N g -8 1
< 1 ! : H =

| . v S 20| .

0 T Y | | | |
0 50 100 150 200 250 Stc. Dyn. Shr.
Time [s] Mechanism
(a) Workload (b) Results

Figure 5.3: Visualization and results for a modified non-overlapping bursty workload.

- App 1 (Req.) - App 2 (Req.) -~ App 3 (Req.)
— App 1 (Reg.) — App 2 (Reg.) — App 3 (Reg.)

Executors

Time [s]

Figure 5.4: Executor requests and registrations during a burst of App 1.

shows the distribution of query durations. Surprisingly, Dynamic Partitioning performs
the worst with a median query duration of 59 seconds, 6 and 31 seconds slower than Static
Partitioning and Node-Level Sharing, respectively. To better understand the cause of this
discrepancy between the hypothesis and result regarding the mechanism performance, it
is vital to investigate the operation of the mechanism in more detail.

Figure 5.4 shows the requests and registrations of executors over time for a single appli-
cation at the start of a burst. As can be seen in the figure, it takes more than 7 seconds
between the request and registration of the first executor. It furthermore takes over
30 seconds before all of the six available executors are registered to the application. With
that, the advantage of the mechanism that should allow a single application to acquire
all available resources is overshadowed by large overheads associated with allocating and

registering executors at time scales like those in question. (MF5.1)

49

5. PERFORMANCE CHARACTERIZATION OF RESOURCE SHARING
MECHANISMS OF SPARK ON KUBERNETES

- App 1 (Req.) -~ App 2 (Req.) - App 3 (Req.) ! ‘ _
—App 1 (Reg) —App 2 (Reg) —App3 (Reg) | 4500 [- 1
T T T T T T T T _
6 :-.E!'.'.'.u-.u-.'.'.!-.ul.'.'.'.z-.u'.'.'.'.z-.uu. 5
- £ E
g4y 1 A 10| |
2 e e
| | L 50 e |
| | |
0 5 10 15 20 25 30 35 1 2 3
Time [App

(a) All apps are started at the same time.

- App 1 (Req.) -~ App 2 (Req.) - App 3 (Req.) 360 |- |
— App 1 (Reg.) — App 2 (Reg.) — App 3 (Reg.) —
T T T T T T T T — |)
6 - :.a:IElllllllllll’lllllll'llllllllll—l .5 240 | |
® .l H unfair | %3 | |
2 %1 s offset T A 5
> |
§ ol N4 | qsg 120 - =
= N1y \/ c [B
sEn]
0 | | | | ! ! | L] 0@ | | L
0 5 10 15 20 25 30 35 1 2 3
Time [s] App

(b) Each app is started 1 second after the previous.

Figure 5.5: Executor requests and registrations (left) and per-application results (right) for
two, almost identical runs of a constant workload.

5.3.2 Dynamic Partitioning Cannot Establish Fairness

The aforementioned overheads are not the only issue with Dynamic Partitioning. In its
current form, the mechanism does not support preemption or other fairness mechanisms.
So once an application has acquired more resources than its theoretical fair share, it can
hold onto those resources as long as it still has work, even when other applications have
equal or larger amounts of outstanding work.

An exemplary manifestation of the subsequent problems is shown in Figure 5.5. We
ran the same workload with a constant and equally distributed load twice, once with all
applications starting concurrently and once where the second and third application were
delayed by 1 and 2seconds, respectively. As can be seen in Figure 5.5a, where the plot

on the left again shows the executor requests and registrations over time, all applications

50

5.3 Findings

acquire the same number of executors in the former scenario and thus exhibit similar
performances.

However, when the applications are started with increasing offsets, the resources are
unevenly distributed in favor of the first application, as shown in Figure 5.5b. Because
there is no preemption, this application can hold onto its unfair share of the available re-
sources for the duration of the workload, resulting in significant differences in performance
between applications. (MF5.2)

The shown result is after a relatively short 5 minute workload; longer workloads further
increase the differences in performance if the load is high enough, as the applications with
insufficient resources keep getting increasingly overwhelmed by incoming queries, leading
to long delays.

These results highlight that the current form of Dynamic Partitioning is not usable
in any practical setting similar to those evaluated in this work. All subsequent results
and discussions will omit Dynamic Partitioning to allow a greater focus on the remaining

mechanisms.

5.3.3 Node-Level Sharing can Increase Performance with Better Uti-

lization

Theoretically, Node-Level Sharing should allow for better resource utilization when the
cluster load is unbalanced as the applications under high load can make use of the resources
not needed by the others. A prime example of such an unbalanced load is the non-
overlapping bursty workload introduced earlier (Figure 5.2a), shown in Figure 5.6a.

The results for this workload, shown in Figure 5.6¢, confirm this hypothesis; Node-Level
Sharing clearly outperforms Static Partitioning with a mean query time of 27 seconds for
the former, 25 seconds faster than for the latter with 52 seconds.

Figure 5.6b shows a snapshot of the CPU utilization in all executor nodes in the cluster
during the workload. This data further supports the hypothesis; Node-Level Sharing
shows a significantly higher peak utilization of around 90% during the bursts. With Static
Partitioning, as expected, two thirds of the cluster are idle and with that the overall CPU
utilization is only around 30%. (MF5.3)

The same is true in workloads that are not as specifically crafted to suit the mechanism.
Figure 5.7a shows the results for a random workload (as shown in Figure 5.2d) of low
intensity with an average of 1.5 queries per minute per application, where it can be seen
that Node-Level Sharing similarly outperforms Static Partitioning with mean query times

of 22 and 43 seconds, respectively.

ol

5. PERFORMANCE CHARACTERIZATION OF RESOURCE SHARING
MECHANISMS OF SPARK ON KUBERNETES

—App1l --App2 - App3 70 F -
T T T T T T
PR T
= | 1 : b 60 |- |
S : i '
R ek
g ! :
< : : 50 1 1
0 L | 1 | I 1 @
0 60 120 180 240 300 g
Time [s] *g 401 —— .
5 e
(a) Workload snapshot A ° —_—r
>
— Static ---Shared ‘ é'; 30 § |
100 [T T T T T]
— _'. i .. 1 I o
X
g o
Zos0p 8
> o
© ," :' 10 %
i = : I I
0 60 120 180 240 300 Static Shared
Time [s] Mechanism
(b) Executor CPU usage snapshot (c) Results

Figure 5.6: Results and executor CPU usage for the non-overlapping bursty workload.

5.3.4 Node-Level Sharing Performance can Suffer from Saturation

What is a clear advantage for Node-Level Sharing (i.e., the direct sharing of all resources)
with workloads where the overall cluster load is low quickly becomes its disadvantage once
the overall concurrent load in the cluster increases, as is the case for the overlapping bursty
workload, shown in Figure 5.8a,

Figure 5.8c shows the result for the overlapping bursty workload, with a snapshot of
the CPU utilization again shown in Figure 5.8b. Now, as all applications are active
and utilizing their static partition of the resources at the same time, Static Partitioning
achieves a high CPU utilization across all executor nodes. Node-Level Sharing on the
other hand now experiences CPU saturation, due to all applications trying to use all
nodes at the same time. With such an overly high system load, performance degrades due
to contention overheads. (MF5.4)

This behavior continues to show for random workloads as well. When increasing the in-

52

5.3 Findings

. o - 8 -~ _
= —o— <150 8 o 1 =
g 100 4 8 T & 400 |
£ £ 100 1 E
A A A
> 50 [1 >y | B > 200 [1
i :
< —1I— = | @ 0 I I 0 —_—
Ot | i - L | |] L I I i
Static Shared Static Shared Static Shared
Mechanism Mechanism Mechanism

(a) Low-intensity (i = 1.5) (b) Medium-intensity (i = 4) (c) High-intensity (i = 6)

Figure 5.7: Results for random workloads with varying intensity.

tensity from 1.5, as previously tested, to 4, the performance of both mechanisms degrades,
but much more significantly for Node-Level Sharing, as can be seen in Figure 5.7b. While
Static Partitioning shows an increase in outliers, likely due to periods of high load for some
application, its mean query duration only degrades by 23%. For Node-Level Sharing, while
still slightly better, the mean query duration is almost doubled (98% slower).!

Further increasing the intensity only magnifies the same trend. Figure 5.7c shows the
results of both mechanisms when increasing the intensity to 6; the overall load in the cluster
is so high that the contention for the available resources greatly degrades the performance
of Node-Level Sharing, now resulting in a mean query time duration of 254 seconds, almost

3times that of Static Partitioning with 88 seconds.

5.3.5 Static Partitioning Offers the Best Performance Predictability

The workloads shown in Figures 5.6a and 5.8a are largely identical from the point of
view of a single application. For both mechanisms under test, the performance is worse
in the workload with overlapping bursts. This shows that both mechanisms are affected
by performance unpredictability (for a single application) due to interference between
applications. The cause for this interference in the case of Static Partitioning is not clear,
as theoretically the applications are fully separated in the cluster. Some possible causes
for the interference could be the colocation of virtual machines on the same host, use of
the same storage server, or overheads from the Kubernetes control.

While mean query duration under Static Partitioning is degraded by 16%, Node-Level

Sharing shows a performance penalty of over 160%. If a user would have no information

1For those interested: We also tested Dynamic Partitioning with the same workload, which was able
to achieve a mean query duration of nothing short of respectable 330 seconds!

93

5. PERFORMANCE CHARACTERIZATION OF RESOURCE SHARING
MECHANISMS OF SPARK ON KUBERNETES

—App1l --App2 - App3

T T T T T T
£ 80 - :
)
=)
O) ——
g
Be 70 - |
Q
<
| | | | =
0 60 120 180 240 300 g 60 | .
Time [s] b= §
=
(a) Workload snapshot A 501 |
Ef o
— Static ---Shared ‘ éi
100 [smemmmem J—] [— js— 7 40 — 8 |
. ! N saturation
X i
g)o : 30
< 'l - ,
= 50 '.
o !
o 20f ° .
0Lk 1 I [L 1] I |
0 60 120 180 240 300 Static Shared
Time [s] Mechanism
(b) Executor CPU usage snapshot (c) Results

Figure 5.8: Results and executor CPU usage for the overlapping bursty workload.

about the remaining users of the cluster, they could make very few assumptions about the
expected performance when Node-Level Sharing is used. As shown in Section 5.3.2, the
performance of a single application under Dynamic Partitioning is also highly dependent
on the remaining load in the cluster. Static Partitioning, while also experiencing some
interference, therefore gives the best performance stability and predictability of the three

mechanisms. (MF5.5)

5.4 Limitations

We identified multiple limitations in the setup of the experiments that could reduce the

accuracy and impact the relevance of the findings.

Technical setup All experiments were performed on a 10-node cluster, emulated on
two physical machines, resulting in multiple limitations for the precision and relevance of

the findings.

o4

5.5 Summary

Firstly, the relatively small cluster size limits not only the number of concurrent ap-
plications but also the number of executors available for each. Kaufmann et al., for in-
stance, use a physical cluster of more than 5 times the size (224 cores in total) to evaluate
a single Spark application [28]. However, as mentioned in Section 4.5, the scalability of
ShareBench-Base has not been tested. It is thus unclear whether experiments with (much)
larger clusters would be possible.

Running multiple virtual nodes on the same physical machine may have implications on
performance, especially with regard to performance variability due to noisy neighbors [121].
Additionally, all applications used the same storage server, which again might introduce
a noisy neighbor effect between multiple applications accessing the storage concurrently.

Lastly, due to technical issues, the two physical machines were only connected with
a 1-Gbps Ethernet link, which showed to negatively affect the performance of executors

running on the host that did not also host the storage servers, due to slow storage access.

Limited exploration of parameters The complex technical setup, numerous options
for mechanism configurations, and versatile workload generator give the experiments a
high-dimensional parameter space with many possible explorations. Yet, due to the rel-
atively little time available for this work, many parameters were not explored to a great
extent, but rather kept fixed at some initial value. Some examples include executor time-
outs in Dynamic Partitioning, oversubscription ratios in Node-Level Sharing, or average

query durations used in the workloads.

5.5 Summary

To demonstrate their practical application and refine the designs and implementations, we
used ShareBench-Gen (Chapter 3) and ShareBench-Base (Chapter 4) together to evaluate
three selected resource sharing mechanisms of Spark on Kubernetes at the hand of Online

Analytical Processing (OLAP) workloads as can be found in data warehouse systems.

5.5.1 Performance Characteristics of the Resource Sharing Mechanisms

The experiments showed significant differences in the performance characteristics of the
mechanisms; the main findings are summarized below and supplemented with actionable
insights.

Dynamic Partitioning, while theoretically promising, not only leads to high overheads

from allocating and registering resources (MF5.1), but also has no mechanism or policy

95

5. PERFORMANCE CHARACTERIZATION OF RESOURCE SHARING
MECHANISMS OF SPARK ON KUBERNETES

for preemption of executors (MF5.2). Performance can consequently drastically differ
between applications in the same cluster in many scenarios. In its current form, Dy-
namic Partitioning is ill suited as a resource sharing mechanism and should
not be considered in most cases.

Static Partitioning and Node-Level Sharing are both viable options, but which one to
favor highly depends on the expected workload characteristics. If the overall load in
the cluster is low and unbalanced, Node-Level Sharing can greatly increase
the resource utilization and thereby improve the overall performance. (MF5.3)
However, once the load increases, the performance of Node-Level Sharing can quickly suffer
due to CPU saturation and subsequent contention overheads. (MF5.4) For workloads
where the load is high throughout the cluster, Static Partitioning performs the
best. It is furthermore the only mechanism that offers good performance predictability
without information about all applications in the cluster, as each application operates
mostly isolated. (MF5.5)

The choice between Static Partitioning and Dynamic Partitioning therefore depends on
knowledge of the expected workloads. If such knowledge does not exist, Static Partitioning

is the safer choice but could compromise performance for some workloads.

5.5.2 Implications for Choice and Development of Resource Sharing
Mechanisms and Policies

These results show that performance of distributed resource-sharing mechanisms and poli-
cies can be highly dependent on the characteristics of the workload. When choosing
between existing mechanisms or even developing new ones, the requirements and ex-
pected workloads should be carefully evaluated to meet performance objectives

and use the available resources efficiently.

5.5.3 Potential of the Workload Generator and Infrastructure Frame-
work

The experiments showed that the proposed designs and implementations for the workload
generator and infrastructure framework are able to facilitate a wide range of experiments
and can offer a high degree of automation. A large variety of workloads can be generated,
those workloads can be run individually with as little as a single command, and whole
experiments with many workloads and mechanisms are equally simple to initiate and

analyze.

56

6

Conclusion

When starting this thesis, our aim was to address the lack of knowledge about the per-
formance characteristics of distributed resource-sharing mechanisms and policies in the
composition of application framework and resource manager. We quickly realized that the
apparent information deficit was due to multiple factors, which we narrowed down into
problems problems P1-P4. Based on these problems, we formulated one main and three

sub-research questions, the answers to which would help address the problems.

6.1 Summary of the Work

With the research questions in mind we structured the work into three main chapters,

each of which contributes to answering the main research question.

6.1.1 Chapter 3 - ShareBench-Gen

We addressed RQ1 (How to design and implement a workload generator for performance
analysis studies of distributed resource-sharing mechanisms and policies?) by proposing
the design and implementation of a workload generator for performance analysis studies
of distributed resource-sharing mechanisms and policies.

ShareBench-Gen, is based on the data set and queries of the TPC-DS benchmark, and
aimed at generating workloads for evaluating Online Analytical Processing systems, like
those commonly found in many Business Intelligence environments. The design of the
generator is versatile, not restricted to the specific type of data and queries, and can be
applied for any workload consisting of a series of discrete work units with defined and

foreseeable durations.

o7

6. CONCLUSION

Although we identified multiple limitations and possible future extensions of the pro-
posed design and implementation, we were able to successfully use ShareBench-Gen to
support various experiments to characterize the performance of resource-sharing mecha-
nisms of Spark on Kubernetes (Chapter 5).

With our design and implementation, we provide multiple contributions, summarized in
the following.

MC3.1: Analysis and elicitation of requirements for a workload generator.

MC3.2: A simple, yet highly versatile conceptual design for a workload generator, ap-
plicable for any type of workload represented as discrete work units of predictable

duration.

MC3.3: An implementation of the workload generator design for OLAP workloads based
on the TPC-DS data set and queries.

6.1.2 Chapter 4 - ShareBench-Base

To address RQ2 (How to design and implement an infrastructure framework for automated
real-world performance analysis studies of distributed resource-sharing mechanisms and
policies?) we followed a similar approach by proposing the design and implementation
of ShareBench-Base, an infrastructure framework for automated real-world performance
analysis studies of distributed resource-sharing mechanisms and policies. The proposed
conceptual design describes the general architecture of the framework, likely applicable to
experiments with various system compositions; the implementation is a realization of that
architecture for Spark SQL on Kubernetes.

ShareBench-Base supports a wide range of automated experiments through a versatile
experiment recipe format and collection options for numerous metrics. Its modular nature
and the use of common components like Python and YAML facilitate extension of the
implementation for needs going beyond the current capabilities.

However, the extensibility could be greatly improved by designing an interface abstrac-
tion for plug-in extensions, and also the automation processes could be greatly extended.
Other limitations include the complex nature of some configuration options and limited in-
formation about compatibility of the implementation with host systems different to those
tested.

We developed ShareBench-Base alongside the experiments conducted to answer RQ3.
With this process, we were not only able to iteratively improve the design and imple-

mentation based on our first-hand experience but also got a direct impression of the time

58

6.1 Summary of the Work

savings enabled through the automation of the framework. In its final version, the infras-
tructure framework reduced the time we spent performing experiments from hours to tens
of minutes per experiment.

Our design and implementation provide multiple contributions, summarized in the fol-
lowing.
MC4.1: Analysis and elicitation of requirements for an infrastructure framework for au-

tomated real-world performance analysis studies.

MC4.2: A generalized, process-based conceptual design for an infrastructure framework

for automated real-world performance analysis studies.

MC4.3: A structural topology of required components for performance analysis studies

of Spark SQL on Kubernetes.

MC4.4: An implementation of the infrastructure framework design for Spark SQL on

Kubernetes.

6.1.3 Chapter 5 - Performance Characterization

Finally, we addressed RQ3 (What are the performance characteristics of the resource-
sharing mechanisms of Spark on Kubernetes?) by using ShareBench-Gen and ShareBench-
Base together to perform a series of performance analysis experiments aimed at character-
izing research-sharing mechanisms of Spark on Kubernetes. We were able to utilize both
the infrastructure and the workload generator for the experiments and use the experience
to improve their design and implementation through many iterations.

The experiments enabled us to thoroughly evaluate the resource-sharing mechanisms
based on various workload characteristics. Through the analysis, we came to numerous
conclusions. The main findings are summarized below; a more detailed explanation and
actionable insights for the choice of existing or development of new mechanisms can be
found in Chapter 5. Due to limitations of the available hardware and the relatively little
time available for this work, the findings may be limited in accuracy and relevance for
larger systems.

MF5.1: Dynamic Partitioning leads to significant overheads from allocating and regis-

tering resources.

MF5.2: Dynamic Partitioning does not support preemption or other fairness mechanisms,
leading to drastic performance differences between applications, even with near iden-

tical workloads.

99

6. CONCLUSION

MF5.3: When the concurrent load in the cluster is unbalanced, Node-Level Sharing can

significantly improve performance due to better resource utilization.

MF5.4: If the concurrent load in the cluster is high, Node-Level Sharing experiences

saturation leading to a degradation of performance.

MF5.5: Among the studied mechanisms, Static Partitioning has the best performance

predictability, as interference between applications is minimal.

6.2 Summary and Future Work

With the explosive increases in global data production [7, 8] and the need for extensive
analysis to derive value from this data [9, 10], data centers are highly relevant for the
functioning of many areas of modern society [1-5, 10, 43, 49-52]. Yet, energy consump-
tion and carbon footprint of the, often warehouse-sized, computing facilities is a prevalent
issue [53-55]. Increases in efficiency are needed to support the growing demand for compu-
tation, especially considering the limits of available energy, which are unlikely to improve
significantly in the near future [11].

With the continuous shift towards (hyperscale) cloud data centers [47], resource-sharing
mechanisms can have a significant impact as they can improve the utilization of available
resources and thus increase efficiency. Our experiments showed that the performance of
various mechanisms can differ significantly. However, performance highly depends on the
characteristics of the workload, implying that informed decisions for the choice config-
uration, or development of resource-sharing mechanisms and policies could significantly
improve overall performance if the assumptions about the expected workloads are accurate.

Our work aims to facilitate performance analysis studies of distributed resource-sharing
mechanisms and policies by proposing a systematic approach based on a workload gen-
erator and an infrastructure framework. We further characterize three resource-sharing
mechanisms of Spark on Kubernetes. For future research, we identify three main directions
in which to extend this work. (1) Further experiments using the existing ShareBench-Gen
and ShareBench-Base implementations, with more extensive exploration of the possible
parameters for new findings, or a larger experiment cluster to validate or correct the
findings of this work for larger systems. (2) Extensions to ShareBench-Gen to improve
existing workloads, generate new types of workloads, or refine usability with more fea-
tures and better abstractions. (3) Extensions to ShareBench-Base that expand the set

of possible experiments and introduce more metrics to further extend the capabilities of

60

6.2 Summary and Future Work

the framework, add support for other Application Frameworks or Resource Mangers, or
extend the automation processes to further improve usability and time savings.
The source code and all experiment data produced as part of this work are publicly

available on GitHub!.

"https://github.com/atlarge-research /ShareBench

61

https://github.com/atlarge-research/ShareBench
https://github.com/atlarge-research/ShareBench

6. CONCLUSION

62

References

Professional Engineering. “The striking engineering inside the euro 2024 ball”.
(7 Oct. 2024), [Online|. Available: https : / / www . imeche . org / news / news -
article/the-striking-engineering-inside-the-euro-2024-ball (visited
on 18 Jul. 2024).

V. J. Garcia-Morales, A. Garrido-Moreno and R. Martin-Rojas, “The transform-
ation of higher education after the COVID disruption: Emerging challenges in an
online learning scenario”, Frontiers in Psychology, vol. 12, p. 616 059, 11 Feb. 2021,
ISSN: 1664-1078. DOL: 10.3389/fpsyg.2021.616059. [Online|. Available: https:
//www.frontiersin.org/articles/10.3389/fpsyg.2021.616059/full.

M. M. Hasan, J. Popp and J. Olah, “Current landscape and influence of big data on
finance”, Journal of Big Data, vol. 7, no. 1, p. 21, Dec. 2020, 1SSN: 2196-1115. DOTI:
10.1186/s40537-020-00291~z. [Online]. Available: https://journalofbigdata.
springeropen.com/articles/10.1186/s40537-020-00291-z.

S. Shilo, H. Rossman and E. Segal, “Axes of a revolution: Challenges and promises of
big data in healthcare”, Nature Medicine, vol. 26, no. 1, pp. 29-38, Jan. 2020, ISSN:
1078-8956, 1546-170X. poI: 10.1038/s41591-019-0727~5. [Online|. Available:
https://www.nature.com/articles/s41591-019-0727-5.

Progressive Railroading. “On a high-tech trek: Norfolk southern notes progress in
its quest to become a ’technology-enabled railroad of the future’”. (Aug. 2018),
[Online]. Available: https : / / www . progressiverailroading . com / norfolk _
southern / article /0On - a-high - tech - trek - Norfolk - Southern - notes -
progress-in-its-quest-to-become-a-technology-enabled-railroad-
of-the-future--55310 (visited on 18 Jul. 2024).

R. F. Jgrgensen, Ed., Human rights in the age of platforms, Information policy
series, Cambridge, MA: The MIT Press, 2019, 342 pp., ISBN: 978-0-262-03905-5.

Statista, “Volume of data/information created, captured, copied, and consumed
worldwide from 2010 to 2020, with forecasts from 2021 to 2025”, 2021. [Online].
Available: https://www.statista.com/statistics/871513/worldwide-data-
created/ (visited on 17 Jul. 2024).

63

https://www.imeche.org/news/news-article/the-striking-engineering-inside-the-euro-2024-ball
https://www.imeche.org/news/news-article/the-striking-engineering-inside-the-euro-2024-ball
https://doi.org/10.3389/fpsyg.2021.616059
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.616059/full
https://www.frontiersin.org/articles/10.3389/fpsyg.2021.616059/full
https://doi.org/10.1186/s40537-020-00291-z
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00291-z
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00291-z
https://doi.org/10.1038/s41591-019-0727-5
https://www.nature.com/articles/s41591-019-0727-5
https://www.progressiverailroading.com/norfolk_southern/article/On-a-high-tech-trek-Norfolk-Southern-notes-progress-in-its-quest-to-become-a-technology-enabled-railroad-of-the-future--55310
https://www.progressiverailroading.com/norfolk_southern/article/On-a-high-tech-trek-Norfolk-Southern-notes-progress-in-its-quest-to-become-a-technology-enabled-railroad-of-the-future--55310
https://www.progressiverailroading.com/norfolk_southern/article/On-a-high-tech-trek-Norfolk-Southern-notes-progress-in-its-quest-to-become-a-technology-enabled-railroad-of-the-future--55310
https://www.progressiverailroading.com/norfolk_southern/article/On-a-high-tech-trek-Norfolk-Southern-notes-progress-in-its-quest-to-become-a-technology-enabled-railroad-of-the-future--55310
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/

REFERENCES

8]

[12]

J. Rydning, “Worldwide IDC global DataSphere forecast, 2023-2027: It’s a dis-
tributed, diverse, and dynamic (3d) DataSphere”, International Data Corpora-
tion (IDC), US50554523, Apr. 2023. [Online]. Available: https://www.idc.com/
getdoc. jsp?containerId=US50554523.

J. Fan, F. Han and H. Liu, “Challenges of big data analysis”, National Science
Review, vol. 1, no. 2, pp. 293-314, 1 Jun. 2014, 18sN: 2053-714X, 2095-5138. DOTI:
10.1093/nsr/nwt032. [Online|. Available: https://academic . oup.com/nsr/
article/1/2/293/1397586.

T. H. Davenport and J. Dyché, “Big data in big companies”, International Institute
for Analytics, vol. 3, no. 1, 2013.

R. S. Williams, “What’s next? [the end of moore’s law|”, Computing in Science &
Engineering, vol. 19, no. 2, pp. 7-13, Mar. 2017, 1ssN: 1521-9615. por: 10.1109/
MCSE.2017.31. [Online]. Available: http://ieeexplore.ieee . org/document/
7878940/ .

T. N. Theis and H.-S. P. Wong, “The end of moore’s law: A new beginning for in-
formation technology”, Computing in Science & Engineering, vol. 19, no. 2, pp. 41—
50, Mar. 2017, 1SsN: 1521-9615. DOI: 10.1109/MCSE.2017.29. [Online|. Available:
http://ieeexplore.ieee.org/document/7878935/.

M. Zaharia et al., “Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing”, in 9th USENIX symposium on networked systems
design and implementation (NSDI 12), San Jose, CA: USENIX Association, Apr.
2012, pp. 15-28. [Online]. Available: https://www . usenix . org/conference/
nsdil2/technical-sessions/presentation/zaharia.

The Apache Software Foundation., Apache spark. [Online]. Available: https: //
spark.apache.org/ (visited on 27 May 2024).

D. Jeffrey and S. Ghemawat, “MapReduce: A flexible data processing tool”, Com-
munications of the ACM, vol. 53, no. 1, pp. 72-77, 2010.

The Apache Software Foundation., Apache flink. [Online]. Available: https: //
flink.apache.org/ (visited on 27 May 2024).

Anyscale, Inc., Ray. [Online|. Available: https://www.ray.io/ (visited on 27 May
2024).

C. Jin, X. Bai, C. Yang, W. Mao and X. Xu, “A review of power consumption
models of servers in data centers”, Applied Energy, vol. 265, p. 114806, May 2020,
I1SSN: 03062619. DOI: 10 . 1016/ j . apenergy . 2020 . 114806. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0306261920303184.

Kubernetes, Kubernetes. [Online]. Available: https://kubernetes.io/ (visited on
18 May 2024).

64

https://www.idc.com/getdoc.jsp?containerId=US50554523
https://www.idc.com/getdoc.jsp?containerId=US50554523
https://doi.org/10.1093/nsr/nwt032
https://academic.oup.com/nsr/article/1/2/293/1397586
https://academic.oup.com/nsr/article/1/2/293/1397586
https://doi.org/10.1109/MCSE.2017.31
https://doi.org/10.1109/MCSE.2017.31
http://ieeexplore.ieee.org/document/7878940/
http://ieeexplore.ieee.org/document/7878940/
https://doi.org/10.1109/MCSE.2017.29
http://ieeexplore.ieee.org/document/7878935/
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia
https://spark.apache.org/
https://spark.apache.org/
https://flink.apache.org/
https://flink.apache.org/
https://www.ray.io/
https://doi.org/10.1016/j.apenergy.2020.114806
https://linkinghub.elsevier.com/retrieve/pii/S0306261920303184
https://kubernetes.io/

REFERENCES

[20]

[21]

[22]

23]

[24]

[25]

[26]

V. K. Vavilapalli et al., “Apache hadoop YARN: Yet another resource negotiator”,
in Proceedings of the 4th annual Symposium on Cloud Computing, Santa Clara
California: ACM, Oct. 2013, pp. 1-16, 1SBN: 978-1-4503-2428-1. DOI: 10. 1145/
2523616 . 2523633. [Online|. Available: https://dl.acm.org/doi/10.1145/
2523616.2523633.

B. Hindman et al., “Mesos: A platform for fine-grained resource sharing in the data
center”, in §th USENIX Symposium on Networked Systems Design and Implement-
ation (NSDI 11), 2011.

Y. Chen, A. Ganapathi, R. Griffith and R. Katz, “The case for evaluating MapRe-
duce performance using workload suites”, in 2011 IEEE 19th Annual International
Symposium on Modelling, Analysis, and Simulation of Computer and Telecom-
munication Systems, Singapore, Singapore: IEEE, Jul. 2011, pp. 390-399, 1SBN:
978-1-4577-0468-0. DOI: 10.1109/MASCOTS . 2011 . 12. [Online]. Available: http:
//ieeexplore.ieee.org/document/6005383/.

D. Cheng, X. Zhou, P. Lama, J. Wu and C. Jiang, “Cross-platform resource schedul-
ing for spark and MapReduce on YARN”, IEFE Transactions on Computers,
vol. 66, no. 8, pp. 1341-1353, 1 Aug. 2017, 1ssN: 0018-9340. po1: 10.1109/TC.
2017 . 2669964. [Online|. Available: http://ieeexplore. ieee . org/document /
7857034/.

J. Tai, J. Zhang, J. Li, W. Meleis and N. Mi, “ArA: Adaptive resource allocation
for cloud computing environments under bursty workloads”, in 30th IEEE Inter-
national Performance Computing and Communications Conference, Orlando, FL,
USA: IEEE, Nov. 2011, pp. 1-8. por: 10.1109/PCCC. 2011 .6108060. [Online]|.
Available: http://ieeexplore.ieee.org/document/6108060/.

A. Beitch, B. Liu, T. Yung, R. Griffith, A. Fox and D. Patterson, “Rain: A workload
generation toolkit for cloud computing applications”, 2010.

J. Khamse-Ashari, 1. Lambadaris, G. Kesidis, B. Urgaonkar and Y. Zhao, “An
efficient and fair multi-resource allocation mechanism for heterogeneous servers”,
IEEE Transactions on Parallel and Distributed Systems, vol. 29, no. 12, pp. 2686—
2699, 1 Dec. 2018, 1sSN: 1045-9219, 1558-2183, 2161-9883. poI: 10.1109/TPDS.
2018.2841915. [Online|. Available: https://ieeexplore. ieee. org/document/
8368291/.

A. Beltre, P. Saha and M. Govindaraju, “KubeSphere: An approach to multi-tenant
fair scheduling for kubernetes clusters”, in 2019 IEEE Cloud Summit, Washington,
DC, USA: IEEE, Aug. 2019, pp. 1420, 1sBN: 978-1-72813-101-6. DOI: 10.1109/
CloudSummit47114.2019.00009. [Online|. Available: https://ieeexplore.ieee.
org/document/9045748/.

65

https://doi.org/10.1145/2523616.2523633
https://doi.org/10.1145/2523616.2523633
https://dl.acm.org/doi/10.1145/2523616.2523633
https://dl.acm.org/doi/10.1145/2523616.2523633
https://doi.org/10.1109/MASCOTS.2011.12
http://ieeexplore.ieee.org/document/6005383/
http://ieeexplore.ieee.org/document/6005383/
https://doi.org/10.1109/TC.2017.2669964
https://doi.org/10.1109/TC.2017.2669964
http://ieeexplore.ieee.org/document/7857034/
http://ieeexplore.ieee.org/document/7857034/
https://doi.org/10.1109/PCCC.2011.6108060
http://ieeexplore.ieee.org/document/6108060/
https://doi.org/10.1109/TPDS.2018.2841915
https://doi.org/10.1109/TPDS.2018.2841915
https://ieeexplore.ieee.org/document/8368291/
https://ieeexplore.ieee.org/document/8368291/
https://doi.org/10.1109/CloudSummit47114.2019.00009
https://doi.org/10.1109/CloudSummit47114.2019.00009
https://ieeexplore.ieee.org/document/9045748/
https://ieeexplore.ieee.org/document/9045748/

REFERENCES

[28]

[29]

[30]

[34]

M. Kaufmann, K. Kourtis, A. Schuepbach and M. Zitterbart, “Mira: Sharing re-
sources for distributed analytics at small timescales”, in 2018 IEEFE International
Conference on Big Data (Big Data), Seattle, WA USA: IEEE, Dec. 2018, pp. 231—
241, 1SBN: 978-1-5386-5035-6. DOI: 10.1109/BigData . 2018 .8622363. [Ounline].
Available: https://ieeexplore.ieee.org/document/8622363/.

C. Zhu, B. Han and Y. Zhao, “A comparative study of spark on the bare metal and
kubernetes”, in 2020 6th International Conference on Big Data and Information
Analytics (BigDIA), Shenzhen, China: IEEE, Dec. 2020, pp. 117-124, 1SBN: 978-1-
66542-232-1. DOI: 10.1109/BigDIA51454.2020.00027. [Online|. Available: https:
//ieeexplore.ieee.org/document/9384578/.

A. Tosup et al.,, “The AtLarge vision on the design of distributed systems and
ecosystems”, in 2019 IEEE 39th International Conference on Distributed Comput-
ing Systems (ICDCS), Dallas, TX, USA: IEEE, Jul. 2019, pp. 1765-1776, I1SBN:
978-1-72812-519-0. DOI: 10.1109/ICDCS.2019.00175. [Online|. Available: https:
//ieeexplore.ieee.org/document/8885212/.

I. Sommerville, Software Engineering (Always learning), Tenth edition, global edi-
tion. Boston Columbus Indianapolis New York San Francisco Hoboken Amsterdam
Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi
Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo: Pearson,
2016, 810 pp., ISBN: 978-1-292-09613-1.

L. Bass, P. Clements and R. Kazman, Software Architecture in Practice (SEI Series
in Software Engineering). Pearson Education, 2021, 1sSBN: 978-0-13-688602-0.

A. Tosup et al., “The grid workloads archive”, Future Generation Computer Sys-
tems, vol. 24, no. 7, pp. 672-686, Jul. 2008, 1SSN: 0167739X. DOI: 10.1016/j .
future.2008.02.003. [Online]. Available: https://linkinghub.elsevier.com/
retrieve/pii/S0167739X08000125.

Y. Guo, A. L. Varbanescu, D. Epema and A. Iosup, “Design and experimental
evaluation of distributed heterogeneous graph-processing systems”, in 2016 16th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), Cartagena, Colombia: IEEE, May 2016, pp. 203—212, 1SBN: 978-1-5090-
2453-7. DOI: 10.1109/CCGrid.2016.53. [Online]. Available: http://ieeexplore.
ieee.org/document/7515690/.

A. Manterola Lasa, S. Talluri, T. De Matteis and A. Tosup, “The cost of simplicity:
Understanding datacenter scheduler programming abstractions”, in Proceedings of
the 15th ACM/SPEC International Conference on Performance Engineering, Lon-
don United Kingdom: ACM, 7 May 2024, pp. 166-177, 1SBN: 9798400704444. DOTI:

66

https://doi.org/10.1109/BigData.2018.8622363
https://ieeexplore.ieee.org/document/8622363/
https://doi.org/10.1109/BigDIA51454.2020.00027
https://ieeexplore.ieee.org/document/9384578/
https://ieeexplore.ieee.org/document/9384578/
https://doi.org/10.1109/ICDCS.2019.00175
https://ieeexplore.ieee.org/document/8885212/
https://ieeexplore.ieee.org/document/8885212/
https://doi.org/10.1016/j.future.2008.02.003
https://doi.org/10.1016/j.future.2008.02.003
https://linkinghub.elsevier.com/retrieve/pii/S0167739X08000125
https://linkinghub.elsevier.com/retrieve/pii/S0167739X08000125
https://doi.org/10.1109/CCGrid.2016.53
http://ieeexplore.ieee.org/document/7515690/
http://ieeexplore.ieee.org/document/7515690/

REFERENCES

[36]

[37]

[40]

[41]

10.1145/3629526 . 3645038. [Online]. Available: https://dl.acm.org/doi/10.
1145/3629526.3645038.

E. Van Eyk et al., “The SPEC-RG reference architecture for FaaS: From mi-
croservices and containers to serverless platforms”, IFEE Internet Computing,
vol. 23, no. 6, pp. 7-18, 1 Nov. 2019, 1ssN: 1089-7801, 1941-0131. po1: 10.1109/MIC.
2019.2952061. [Online|. Available: https://ieeexplore.ieee.org/document/
8894540/.

G. Andreadis, L. Versluis, F. Mastenbroek and A. Iosup, “A reference architecture
for datacenter scheduling: Design, validation, and experiments”, in SC18: Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, Dallas, TX, USA: IEEE, Nov. 2018, pp. 478-492, 1SBN: 978-1-5386-8384-
2. DOI: 10.1109/S8C.2018.00040. [Online]. Available: https://ieeexplore.ieee.
org/document/8665816/.

R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Fx-
perimental Design, Measurement, Simulation, and Modeling. 1991, 1SBN: 978-0-471-
50336-1.

J. Ousterhout, “Always measure one level deeper”, Communications of the ACM,
vol. 61, no. 7, pp. 74-83, 25 Jun. 2018, 18sN: 0001-0782, 1557-7317. por: 10.1145/
3213770. [Online]. Available: https://dl.acm.org/doi/10.1145/3213770.

G. Heiser. “Systems benchmarking crimes”. (), [Online]. Available: https: //

gernot-heiser.org/benchmarking-crimes.html.

E. D. Berger, S. M. Blackburn, M. Hauswirth and M. W. Hicks. “A checklist mani-
festo for empirical evaluation: A preemptive strike against a replication crisis in
computer science”, PL Perspectives. (28 Aug. 2019), [Online|. Available: https:
//blog.sigplan.org/2019/08/28/a-checklist-manifesto-for-empirical-
evaluation-a-preemptive-strike-against-a-replication-crisis-in-
computer-science/ (visited on 4 Jul. 2024).

S. Bezjak et al., Open science training handbook. Zenodo, Apr. 2018. DOI: 10.
5281/zenodo.1212496. [Online]. Available: https://doi.org/10.5281/zenodo.
1212496.

A. Tosup et al., Future computer systems and networking research in the nether-
lands: A manifesto, 2022. arXiv: 2206.03259[cs.CY].

B. Whitehead, D. Andrews, A. Shah and G. Maidment, “Assessing the envir-
onmental impact of data centres part 1: Background, energy use and metrics”,
Building and Environment, vol. 82, pp. 151-159, Dec. 2014, 1ssN: 03601323. DOTI:
10.1016/j.buildenv.2014.08.021. [Online|. Available: https://linkinghub.
elsevier.com/retrieve/pii/S036013231400273X.

67

https://doi.org/10.1145/3629526.3645038
https://dl.acm.org/doi/10.1145/3629526.3645038
https://dl.acm.org/doi/10.1145/3629526.3645038
https://doi.org/10.1109/MIC.2019.2952061
https://doi.org/10.1109/MIC.2019.2952061
https://ieeexplore.ieee.org/document/8894540/
https://ieeexplore.ieee.org/document/8894540/
https://doi.org/10.1109/SC.2018.00040
https://ieeexplore.ieee.org/document/8665816/
https://ieeexplore.ieee.org/document/8665816/
https://doi.org/10.1145/3213770
https://doi.org/10.1145/3213770
https://dl.acm.org/doi/10.1145/3213770
https://gernot-heiser.org/benchmarking-crimes.html
https://gernot-heiser.org/benchmarking-crimes.html
https://blog.sigplan.org/2019/08/28/a-checklist-manifesto-for-empirical-evaluation-a-preemptive-strike-against-a-replication-crisis-in-computer-science/
https://blog.sigplan.org/2019/08/28/a-checklist-manifesto-for-empirical-evaluation-a-preemptive-strike-against-a-replication-crisis-in-computer-science/
https://blog.sigplan.org/2019/08/28/a-checklist-manifesto-for-empirical-evaluation-a-preemptive-strike-against-a-replication-crisis-in-computer-science/
https://blog.sigplan.org/2019/08/28/a-checklist-manifesto-for-empirical-evaluation-a-preemptive-strike-against-a-replication-crisis-in-computer-science/
https://doi.org/10.5281/zenodo.1212496
https://doi.org/10.5281/zenodo.1212496
https://doi.org/10.5281/zenodo.1212496
https://doi.org/10.5281/zenodo.1212496
https://arxiv.org/abs/2206.03259 [cs.CY]
https://doi.org/10.1016/j.buildenv.2014.08.021
https://linkinghub.elsevier.com/retrieve/pii/S036013231400273X
https://linkinghub.elsevier.com/retrieve/pii/S036013231400273X

REFERENCES

[45]

[47]

[50]

[51]

S. Moss. “In search of the world’s largest data center”. (18 May 2022), [Online].
Available: https://www.datacenterdynamics.com/en/analysis/in-search-

of-the-worlds-largest-data-center/ (visited on 14 Jul. 2024).

E. Masanet, A. Shehabi, N. Lei, S. Smith and J. Koomey, “Recalibrating global data
center energy-use estimates”, Science, vol. 367, no. 6481, pp. 984-986, 28 Feb. 2020,
1SSN: 0036-8075, 1095-9203. DOI: 10.1126/science.aba3758. [Online]. Available:
https://www.science.org/doi/10.1126/science.aba3758.

A. Shehabi, S. J. Smith, E. Masanet and J. Koomey, “Data center growth in the
united states: Decoupling the demand for services from electricity use”, FEnviron-
mental Research Letters, vol. 13, no. 12, p. 124030, 18 Dec. 2018, 1SSN: 1748-9326.
DOI: 10.1088/1748-9326/aaec9c. [Online|. Available: https://iopscience.iop.
org/article/10.1088/1748-9326/aaec9c.

A. S. Fleischer, “Cooling our insatiable demand for data”, Science, vol. 370,
no. 6518, pp. 783-784, 13 Nov. 2020, 1sSN: 0036-8075, 1095-9203. DOI: 10.1126/
science.abeb318. [Online]. Available: https://www.science.org/doi/10.1126/

science.abeb318.

S. V. Patankar, “Airflow and cooling in a data center”, Journal of Heat Trans-
fer, vol. 132, no. 7, p. 073001, 1 Jul. 2010, 1SsN: 0022-1481, 1528-8943. DOI: 10.
1115/1.4000703. [Online|. Available: https://asmedigitalcollection. asme.
org/heattransfer/article/doi/10.1115/1.4000703/451420/Airflow-and-
Cooling-in-a-Data-Center.

M. v. Steen and A. S. Tanenbaum, Distributed Systems, Fourth edition, version
4.01 (January 2023). Erscheinungsort nicht ermittelbar: Maarten van Steen, 2023,
669 pp., ISBN: 978-90-815406-3-6.

B. G. Lindsay, “Jim gray at IBM: The transaction processing revolution”, ACM
SIGMOD Record, vol. 37, no. 2, pp. 38-40, Jun. 2008, 1SsN: 0163-5808. DOI: 10.
1145/1379387.1379401. [Online|. Available: https://dl.acm.org/doi/10.1145/
1379387.1379401.

D. Castro, P. Kothuri, P. Mrowczynski, D. Piparo and E. Tejedor, “Apache spark
usage and deployment models for scientific computing”, EPJ Web of Conferences,
vol. 214, A. Forti, L. Betev, M. Litmaath, O. Smirnova and P. Hristov, Eds.,
p. 07020, 2019, 1SsN: 2100-014X. por: 10 . 1051/ epjconf /201921407020. [On-
line]. Available: https: //www . epj - conferences . org/ 10 . 1051 / epjconf /
201921407020.

IEA, “Electricity 2024”7, IEA, Paris, 2024. [Online]. Available: https://wuw.iea.
org/reports/electricity-2024.

68

https://www.datacenterdynamics.com/en/analysis/in-search-of-the-worlds-largest-data-center/
https://www.datacenterdynamics.com/en/analysis/in-search-of-the-worlds-largest-data-center/
https://doi.org/10.1126/science.aba3758
https://www.science.org/doi/10.1126/science.aba3758
https://doi.org/10.1088/1748-9326/aaec9c
https://iopscience.iop.org/article/10.1088/1748-9326/aaec9c
https://iopscience.iop.org/article/10.1088/1748-9326/aaec9c
https://doi.org/10.1126/science.abe5318
https://doi.org/10.1126/science.abe5318
https://www.science.org/doi/10.1126/science.abe5318
https://www.science.org/doi/10.1126/science.abe5318
https://doi.org/10.1115/1.4000703
https://doi.org/10.1115/1.4000703
https://asmedigitalcollection.asme.org/heattransfer/article/doi/10.1115/1.4000703/451420/Airflow-and-Cooling-in-a-Data-Center
https://asmedigitalcollection.asme.org/heattransfer/article/doi/10.1115/1.4000703/451420/Airflow-and-Cooling-in-a-Data-Center
https://asmedigitalcollection.asme.org/heattransfer/article/doi/10.1115/1.4000703/451420/Airflow-and-Cooling-in-a-Data-Center
https://doi.org/10.1145/1379387.1379401
https://doi.org/10.1145/1379387.1379401
https://dl.acm.org/doi/10.1145/1379387.1379401
https://dl.acm.org/doi/10.1145/1379387.1379401
https://doi.org/10.1051/epjconf/201921407020
https://www.epj-conferences.org/10.1051/epjconf/201921407020
https://www.epj-conferences.org/10.1051/epjconf/201921407020
https://www.iea.org/reports/electricity-2024
https://www.iea.org/reports/electricity-2024

REFERENCES

[54]

[55]

J. Calma. “Google’s carbon footprint balloons in its gemini Al era”, The Verge.
(2 Jul. 2024), [Online]. Available: https : //www . theverge . com/2024/7/2/
24190874 / google-ai-climate - change- carbon-emissions-rise (visited on

8 Jul. 2024).

J. Calma. “This climate tech startup wants to capture carbon and help data centers
cool down”, The Verge. (11 Jul. 2024), [Online]. Available: https://www.theverge.
com/2024/7/11/24195989/climate- change-carbon-removal-startup-280-
earth-google (visited on 14 Jul. 2024).

A. Bog, Benchmarking Transaction and Analytical Processing Systems: The Cre-
ation of a Mized Workload Benchmark and its Application (In-Memory Data Man-
agement Research). Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. DOI: 10.
1007/978-3-642-38070-9. [Online]. Available: https://link.springer.com/
10.1007/978-3-642-38070-9.

S. Melnik et al., “Dremel: Interactive analysis of web-scale datasets”, Communic-
ations of The Acm, vol. 54, no. 6, pp. 114-123, 2011. pDoI: 10.1145/1953122.
1953148. [Online|. Available: https://doi.org/10.1145/1953122.1953148.

S. Melnik et al., “Dremel: A decade of interactive SQL analysis at web scale”, Proc.
VLDB Endow., vol. 13, no. 12, pp. 3461-3472, 2020. DOI: 10.14778/3415478.
3415568. [Online]. Available: http://www . vldb . org/pvldb/voll3/p3461 -
melnik.pdf.

E. Codd, S. Codd and C. Salley, Providing OLAP (On-line Analytical Processing)
to User-analysts: An IT Mandate. Codd & Associates, 1993.

Google Cloud, Big query. [Online]. Available: https : //cloud . google . com/
bigquery (visited on 14 Jul. 2024).

Microsoft, SQL server analysis services overview. [Online]. Available: https://
learn .microsoft . com/en-us/analysis - services/ssas-overview?view=
asallproducts-allversions (visited on 19 Jul. 2024).

Oracle, Getting started with oracle OLAP. [Online]. Available: https://docs.
oracle . com/en/database/oracle/oracle-database/19/olaug/getting-
started-oracle-olap.html (visited on 19 Jul. 2024).

J. Arnold, B. Glavic and I. Raicu, “A high-performance distributed relational data-
base system for scalable OLAP processing”, in 2019 IEEFE International Parallel
and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil: IEEE, May
2019, pp. 738-748, 1SBN: 978-1-72811-246-6. DOI: 10.1109/IPDPS. 2019 .00083.
[Online]. Available: https://ieeexplore.ieee.org/document/8820952/.

The Apache Software Foundation., Apache hadoop. [Online]. Available: https://
hadoop.apache.org/ (visited on 14 Jul. 2024).

69

https://www.theverge.com/2024/7/2/24190874/google-ai-climate-change-carbon-emissions-rise
https://www.theverge.com/2024/7/2/24190874/google-ai-climate-change-carbon-emissions-rise
https://www.theverge.com/2024/7/11/24195989/climate-change-carbon-removal-startup-280-earth-google
https://www.theverge.com/2024/7/11/24195989/climate-change-carbon-removal-startup-280-earth-google
https://www.theverge.com/2024/7/11/24195989/climate-change-carbon-removal-startup-280-earth-google
https://doi.org/10.1007/978-3-642-38070-9
https://doi.org/10.1007/978-3-642-38070-9
https://link.springer.com/10.1007/978-3-642-38070-9
https://link.springer.com/10.1007/978-3-642-38070-9
https://doi.org/10.1145/1953122.1953148
https://doi.org/10.1145/1953122.1953148
https://doi.org/10.1145/1953122.1953148
https://doi.org/10.14778/3415478.3415568
https://doi.org/10.14778/3415478.3415568
http://www.vldb.org/pvldb/vol13/p3461-melnik.pdf
http://www.vldb.org/pvldb/vol13/p3461-melnik.pdf
https://cloud.google.com/bigquery
https://cloud.google.com/bigquery
https://learn.microsoft.com/en-us/analysis-services/ssas-overview?view=asallproducts-allversions
https://learn.microsoft.com/en-us/analysis-services/ssas-overview?view=asallproducts-allversions
https://learn.microsoft.com/en-us/analysis-services/ssas-overview?view=asallproducts-allversions
https://docs.oracle.com/en/database/oracle/oracle-database/19/olaug/getting-started-oracle-olap.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/olaug/getting-started-oracle-olap.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/olaug/getting-started-oracle-olap.html
https://doi.org/10.1109/IPDPS.2019.00083
https://ieeexplore.ieee.org/document/8820952/
https://hadoop.apache.org/
https://hadoop.apache.org/

REFERENCES

[65]

[66]

[67]

[68]

[70]

[71]

[72]

[73]

M. Armbrust et al., “Spark SQL: Relational data processing in spark”, in Pro-
ceedings of the 2015 ACM SIGMOD International Conference on Management of
Data, Melbourne Victoria Australia: ACM, 27 May 2015, pp. 1383-1394, ISBN:
978-1-4503-2758-9. DOI: 10.1145/2723372.2742797. [Online]. Available: https:
//dl.acm.org/doi/10.1145/2723372.2742797.

G. Cheng, S. Ying, B. Wang and Y. Li, “Efficient performance prediction for apache
spark”, Journal of Parallel and Distributed Computing, vol. 149, pp. 40-51, Mar.
2021, 18sN: 07437315. DOI: 10.1016/j . jpdc.2020.10.010. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S0743731520303993.
GitHub, apache/spark. [Online]. Available: https://github.com/apache/spark
(visited on 18 Jul. 2024).

M. Li, J. Tan, Y. Wang, L. Zhang and V. Salapura, “SparkBench: A comprehensive
benchmarking suite for in memory data analytic platform spark”, in Proceedings
of the 12th ACM International Conference on Computing Frontiers, Ischia Italy:
ACM, 6 May 2015, pp. 1-8, 1SBN: 978-1-4503-3358-0. DOI: 10 .1145/2742854 .
2747283. [Online]. Available: https://dl.acm.org/doi/10.1145/2742854 .
2747283.

D. Harris. “Survey shows huge popularity spike for apache spark”, Fortune. (2015),
[Online]. Available: https://fortune.com/2015/09/25/apache-spark-survey/
(visited on 18 Jul. 2024).

Apache Spark, Spark standalone mode. [Online]. Available: https : / / spark .
apache.org/docs/latest/spark-standalone.html (visited on 18 May 2024).
Apache Spark, Running spark on mesos. [Online]. Available: https: //spark .
apache.org/docs/latest/running-on-mesos.html (visited on 19 May 2024).

P. S. Janardhanan and P. Samuel, “Launch overheads of spark applications on
standalone and hadoop YARN clusters”, in Advances in Electrical and Computer
Technologies, T. Sengodan, M. Murugappan and S. Misra, Eds., vol. 672, Series
Title: Lecture Notes in Electrical Engineering, Singapore: Springer Singapore, 2020,
pp. 47-54, 1SBN: 978-981-15-5558-9. DOI: 10.1007/978-981-15-5558-9_5. [On-
line]. Available: http://link.springer.com/10.1007/978-981-15-5558-9_5.

A. Raju, R. Ramanathan and R. Hemavathy, “A comparative study of spark
schedulers’ performance”, in 2019 4th International Conference on Computa-
tional Systems and Information Technology for Sustainable Solution (CSITSS),
Bengaluru, India: IEEE, Dec. 2019, pp. 1-5, 1SBN: 978-1-72812-619-7. pOI: 10.
1109/CSITSS47250 .2019.9031028. [Online]. Available: https://ieeexplore.
ieee.org/document/9031028/.

70

https://doi.org/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797
https://dl.acm.org/doi/10.1145/2723372.2742797
https://doi.org/10.1016/j.jpdc.2020.10.010
https://linkinghub.elsevier.com/retrieve/pii/S0743731520303993
https://github.com/apache/spark
https://doi.org/10.1145/2742854.2747283
https://doi.org/10.1145/2742854.2747283
https://dl.acm.org/doi/10.1145/2742854.2747283
https://dl.acm.org/doi/10.1145/2742854.2747283
https://fortune.com/2015/09/25/apache-spark-survey/
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/spark-standalone.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://spark.apache.org/docs/latest/running-on-mesos.html
https://doi.org/10.1007/978-981-15-5558-9_5
http://link.springer.com/10.1007/978-981-15-5558-9_5
https://doi.org/10.1109/CSITSS47250.2019.9031028
https://doi.org/10.1109/CSITSS47250.2019.9031028
https://ieeexplore.ieee.org/document/9031028/
https://ieeexplore.ieee.org/document/9031028/

REFERENCES

[74]

[75]

[76]

[77]

[81]

[82]

[83]

Amazon AWS, Amazon elastic kubernetes service (EKS). [Online]. Available:
https://aws.amazon.com/eks/?nc2=type_a (visited on 19 May 2024).

Google Cloud, Google kubernetes engine (GKE). [Online|. Available: https://
cloud.google.com/kubernetes-engine/7hl=en (visited on 19 May 2024).

Microsoft, Azure kubernetes service (AKS). [Online|. Available: https://azure.

microsoft . com/en-us/products/kubernetes-service/ (visited on 19 May
2024).

S. Agarwal, X. Li, R. Xin and J. Damji. “Introducing apache spark 2.3”. (2018),
[Online]. Available: https : / / www . databricks . com / blog /2018 /02 /28 /
introducing-apache-spark-2-3.html (visited on 18 May 2024).

P. Saha, A. Beltre and M. Govindaraju, “Exploring the fairness and resource dis-
tribution in an apache mesos environment”, in 2018 IEEE 11th International Con-
ference on Cloud Computing (CLOUD), San Francisco, CA, USA: IEEE, Jul. 2018,
pp. 434-441, 1SBN: 978-1-5386-7235-8. DOI: 10.1109/CLOUD.2018.00061. [Online].
Available: https://ieeexplore.ieee.org/document/8457829/.

Apache Spark, Dynamic resource allocation. [Online]. Available: https://spark.
apache . org / docs / latest / job - scheduling . html # dynamic - resource -
allocation (visited on 21 May 2024).

T.-T. Nguyen, Y.-J. Yeom, T. Kim, D.-H. Park and S. Kim, “Horizontal pod auto-
scaling in kubernetes for elastic container orchestration”, Sensors, vol. 20, no. 16,
p. 4621, 17 Aug. 2020, 1sSN: 1424-8220. DOI: 10.3390/520164621. [Online|. Avail-
able: https://www.mdpi.com/1424-8220/20/16/4621 (visited on 18 Jul. 2024).

K. Rzadca et al., “Autopilot: Workload autoscaling at google”, in Proceedings of
the Fifteenth European Conference on Computer Systems, Heraklion Greece: ACM,
15 Apr. 2020, pp. 1-16, 1SBN: 978-1-4503-6882-7. DOI: 10.1145/3342195.3387524.
[Online]. Available: https://dl.acm.org/doi/10.1145/3342195.3387524.

S. A. Baset, L. Wang and C. Tang, “Towards an understanding of oversubscrip-
tion in cloud”, in 2nd USENIX Workshop on Hot Topics in Management of In-
ternet, Cloud, and Enterprise Networks and Services (Hot-ICE 12), San Jose, CA:
USENIX Association, Apr. 2012. [Online]. Available: https://www.usenix.org/
conference/hot-icel2/workshop-program/presentation/baset.

0.-C. Marcu, A. Costan, G. Antoniu and M. S. Perez-Hernandez, “Spark versus
flink: Understanding performance in big data analytics frameworks”, in 2016 IEEE
International Conference on Cluster Computing (CLUSTER), Taipei, Taiwan:
IEEE, Sep. 2016, pp. 433-442, 1SBN: 978-1-5090-3653-0. DOI: 10.1109/CLUSTER.
2016 . 22. [Online]. Available: http : / / ieeexplore . ieee . org / document /
7776539/.

71

https://aws.amazon.com/eks/?nc2=type_a
https://cloud.google.com/kubernetes-engine/?hl=en
https://cloud.google.com/kubernetes-engine/?hl=en
https://azure.microsoft.com/en-us/products/kubernetes-service/
https://azure.microsoft.com/en-us/products/kubernetes-service/
https://www.databricks.com/blog/2018/02/28/introducing-apache-spark-2-3.html
https://www.databricks.com/blog/2018/02/28/introducing-apache-spark-2-3.html
https://doi.org/10.1109/CLOUD.2018.00061
https://ieeexplore.ieee.org/document/8457829/
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://spark.apache.org/docs/latest/job-scheduling.html#dynamic-resource-allocation
https://doi.org/10.3390/s20164621
https://www.mdpi.com/1424-8220/20/16/4621
https://doi.org/10.1145/3342195.3387524
https://dl.acm.org/doi/10.1145/3342195.3387524
https://www.usenix.org/conference/hot-ice12/workshop-program/presentation/baset
https://www.usenix.org/conference/hot-ice12/workshop-program/presentation/baset
https://doi.org/10.1109/CLUSTER.2016.22
https://doi.org/10.1109/CLUSTER.2016.22
http://ieeexplore.ieee.org/document/7776539/
http://ieeexplore.ieee.org/document/7776539/

REFERENCES

[84]

[85]

[87]

[88]

[90]

N. Ahmed, A. L. C. Barczak, T. Susnjak and M. A. Rashid, “A comprehensive per-
formance analysis of apache hadoop and apache spark for large scale data sets using
HiBench”, Journal of Big Data, vol. 7, no. 1, p. 110, Dec. 2020, 1sSN: 2196-1115. DOTI:
10.1186/s40537-020-00388-5. [Online|. Available: https://journalofbigdata.
springeropen.com/articles/10.1186/s40537-020-00388-5.

M. Péss, B. Smith, L. Kollar and P.-A. Larson, “TPC-DS, taking decision support
benchmarking to the next level”, in Proceedings of the 2002 ACM SIGMOD inter-
national conference on management of data, madison, wisconsin, USA, june 3-6,
2002, M. J. Franklin, B. Moon and A. Ailamaki, Eds., ACM, 2002, pp. 582-587.
DOIL: 10.1145/564691.564759. [Online]. Available: https://doi.org/10.1145/
564691 .564759.

L. Wang et al., “BigDataBench: A big data benchmark suite from internet ser-
vices”, in 2014 IEEE 20th International Symposium on High Performance Com-
puter Architecture (HPCA), Orlando, FL, USA: IEEE, Feb. 2014, pp. 488-499,
ISBN: 978-1-4799-3097-5. DOI: 10.1109/HPCA . 2014 .6835958. [Online]. Available:
http://ieeexplore.ieee.org/document/6835958/.

A. Ghazal et al., “BigBench: Towards an industry standard benchmark for big data
analytics”, in Proceedings of the 2018 ACM SIGMOD International Conference on
Management of Data, New York New York USA: ACM, 22 Jun. 2013, pp. 1197-
1208, 1SBN: 978-1-4503-2037-5. DOI: 10.1145/2463676 .2463712. [Online]. Avail-
able: https://dl.acm.org/doi/10.1145/2463676.2463712.

D. Agrawal et al., “SparkBench — a spark performance testing suite”, in Perform-
ance Evaluation and Benchmarking: Traditional to Big Data to Internet of Things,
R. Nambiar and M. Poess, Eds., vol. 9508, Series Title: Lecture Notes in Computer
Science, Cham: Springer International Publishing, 2016, pp. 26—44, 1SBN: 978-3-
319-31408-2 978-3-319-31409-9. DOI: 10.1007/978-3-319-31409-9_3. [Online].
Available: http://link.springer.com/10.1007/978-3-319-31409-9_3.

S. Huang, J. Huang, J. Dai, T. Xie and B. Huang, “The HiBench benchmark suite:
Characterization of the MapReduce-based data analysis”, in 2010 IEEE 26th Inter-
national Conference on Data Engineering Workshops (ICDEW 2010), Long Beach,
CA, USA: IEEE, 2010, pp. 41-51, ISBN: 978-1-4244-6522-4. DOT: 10.1109/ICDEW.
2010 . 5452747. [Online]. Available: http://ieeexplore . ieee . org/document /
5452747/.

S. Rizzi and E. Gallinucci, “Cubeload: A parametric generator of realistic OLAP
workloads”, in Advanced Information Systems Engineering, M. Jarke et al., Eds.,
red. by D. Hutchison et al., vol. 8484, Series Title: Lecture Notes in Computer
Science, Cham: Springer International Publishing, 2014, pp. 610-624, 1SBN: 978-3-

72

https://doi.org/10.1186/s40537-020-00388-5
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00388-5
https://journalofbigdata.springeropen.com/articles/10.1186/s40537-020-00388-5
https://doi.org/10.1145/564691.564759
https://doi.org/10.1145/564691.564759
https://doi.org/10.1145/564691.564759
https://doi.org/10.1109/HPCA.2014.6835958
http://ieeexplore.ieee.org/document/6835958/
https://doi.org/10.1145/2463676.2463712
https://dl.acm.org/doi/10.1145/2463676.2463712
https://doi.org/10.1007/978-3-319-31409-9_3
http://link.springer.com/10.1007/978-3-319-31409-9_3
https://doi.org/10.1109/ICDEW.2010.5452747
https://doi.org/10.1109/ICDEW.2010.5452747
http://ieeexplore.ieee.org/document/5452747/
http://ieeexplore.ieee.org/document/5452747/

REFERENCES

[91]

[92]

[96]

319-07880-9 978-3-319-07881-6. DOI: 10.1007/978-3-319-07881-6_41. [Online].
Available: http://link.springer.com/10.1007/978-3-319-07881-6_41.

Z. Liu, X. Zuo, Z. Li and R. Han, “SparkAIBench: A benchmark to generate Al
workloads on spark”, in Benchmarking, Measuring, and Optimizing, W. Gao, J.
Zhan, G. Fox, X. Lu and D. Stanzione, Eds., vol. 12093, Series Title: Lecture Notes
in Computer Science, Cham: Springer International Publishing, 2020, pp. 215221,
ISBN: 978-3-030-49555-8 978-3-030-49556-5. DOI: 10 .1007 /978-3-030-49556 -
5_21. [Online]. Available: http://1link.springer.com/10.1007/978-3-030-
49556-5_21.

M. Lattuada, E. Barbierato, E. Gianniti and D. Ardagna, “Optimal resource al-
location of cloud-based spark applications”, IEEE Transactions on Cloud Comput-
ing, vol. 10, no. 2, pp. 1301-1316, 1 Apr. 2022, 1SSN: 2168-7161, 2372-0018. DOTI:
10.1109/TCC. 2020 .2985682. [Online|. Available: https://ieeexplore. ieee.
org/document/9057697/.

K. Pawlikowski, “Towards credible and fast quantitative stochastic simulation”,

Jan. 2003.
L. F. Perrone, C. S. Main and B. C. Ward, “SAFE: Simulation automation frame-

work for experiments”, in Proceedings Title: Proceedings of the 2012 Winter Simu-
lation Conference (WSC), Berlin, Germany: IEEE, Dec. 2012, pp. 1-12, 1SBN: 978-
1-4673-4782-2 978-1-4673-4779-2 978-1-4673-4780-8 978-1-4673-4781-5. DOI: 10 .
1109/WSC. 2012 . 6465286. [Online]. Available: http://ieeexplore. ieee.org/
document/6465286/.

M. Silva, M. R. Hines, D. Gallo, Qi Liu, Kyung Dong Ryu and D. Da Silva,
“CloudBench: Experiment automation for cloud environments”, in 2013 IEEE In-
ternational Conference on Cloud Engineering (IC2E), Redwood City, CA: IEEE,
Mar. 2013, pp. 302-311, 1SBN: 978-0-7695-4945-3 978-1-4673-6473-7. DOI: 10.1109/
IC2E.2013.33. [Online]. Available: http://ieeexplore. ieee . org/document/
6529297/.

A. Cairo, The functional art: An introduction to information graphics and visual-
ization (Voices that matter series). New Riders, 2013, tex.lccn: 2012289140, 1SBN:
978-0-321-83473-7. [Online]. Available: https://books . google .de/books ?id=
BiT1ugAACAAJ.

Y. Hong, S. Du and J. Leng, “Evaluating presto and SparkSQL with TPC-DS”, in
Database Systems for Advanced Applications. DASFAA 2022 International Work-
shops, U. K. Rage, V. Goyal and P. K. Reddy, Eds., vol. 13248, Series Title: Lec-
ture Notes in Computer Science, Cham: Springer International Publishing, 2022,
pp. 319-329, 1SBN: 978-3-031-11216-4 978-3-031-11217-1. pDOI: 10.1007/978-3-

73

https://doi.org/10.1007/978-3-319-07881-6_41
http://link.springer.com/10.1007/978-3-319-07881-6_41
https://doi.org/10.1007/978-3-030-49556-5_21
https://doi.org/10.1007/978-3-030-49556-5_21
http://link.springer.com/10.1007/978-3-030-49556-5_21
http://link.springer.com/10.1007/978-3-030-49556-5_21
https://doi.org/10.1109/TCC.2020.2985682
https://ieeexplore.ieee.org/document/9057697/
https://ieeexplore.ieee.org/document/9057697/
https://doi.org/10.1109/WSC.2012.6465286
https://doi.org/10.1109/WSC.2012.6465286
http://ieeexplore.ieee.org/document/6465286/
http://ieeexplore.ieee.org/document/6465286/
https://doi.org/10.1109/IC2E.2013.33
https://doi.org/10.1109/IC2E.2013.33
http://ieeexplore.ieee.org/document/6529297/
http://ieeexplore.ieee.org/document/6529297/
https://books.google.de/books?id=BiT1ugAACAAJ
https://books.google.de/books?id=BiT1ugAACAAJ
https://doi.org/10.1007/978-3-031-11217-1_23
https://doi.org/10.1007/978-3-031-11217-1_23
https://doi.org/10.1007/978-3-031-11217-1_23

REFERENCES

[98]

[101]

[102]

[103]

[104]

[105]

031-11217-1_23. [Online]. Available: https://link.springer.com/10.1007/
978-3-031-11217-1_23.

M. Vuppalapati, J. Miron, R. Agarwal, D. Truong, A. Motivala and T. Cruanes,
“Building an elastic query engine on disaggregated storage”, in 17th USENIX sym-
posium on networked systems design and implementation (NSDI 20), Santa Clara,
CA: USENIX Association, Feb. 2020, pp. 449-462, 1SBN: 978-1-939133-13-7. [On-
line]. Available: https://www.usenix.org/conference/nsdi20/presentation/
vuppalapati.

R. Kimball, The data warehouse toolkit: practical techniques for building dimen-
stonal data warehouses. John Wiley & Sons, Inc., 1996, 1SBN: 0-471-15337-0.

M. Levene and G. Loizou, “Why is the snowflake schema a good data ware-
house design?”, Information Systems, vol. 28, no. 3, pp. 225-240, May 2003, 1SSN:
03064379. DOI: 10.1016/80306-4379(02) 00021 -2. [Online|. Available: https :
//linkinghub.elsevier.com/retrieve/pii/S0306437902000212.

M. Barata, J. Bernardino and P. Furtado, “An overview of decision support bench-
marks: TPC-DS, TPC-h and SSB”, in New Contributions in Information Systems
and Technologies, A. Rocha, A. M. Correia, S. Costanzo and L. P. Reis, Eds.,
vol. 353, Series Title: Advances in Intelligent Systems and Computing, Cham:
Springer International Publishing, 2015, pp. 619-628, 1SBN: 978-3-319-16485-4 978-
3-319-16486-1. DOI: 10.1007/978-3-319-16486-1_61. [Online|. Available: https:
//1link.springer.com/10.1007/978-3-319-16486-1_61.

Transaction Processing Performance Council (TPC), TPC benchmark ™ DS -
standard specification, version 3.2.0, 2021. [Online]. Available: https://www.tpc.
org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf.

M. Rodrigues, M. Y. Santos and J. Bernardino, “Experimental evaluation of big
data analytical tools”, in Information Systems, M. Themistocleous and P. Rupino
Da Cunha, Eds., vol. 341, Series Title: Lecture Notes in Business Information Pro-
cessing, Cham: Springer International Publishing, 2019, pp. 121-127, 1SBN: 978-3-
030-11394-0 978-3-030-11395-7. DOIL: 10.1007/978-3-030-11395-7_12. [Online].
Available: http://link.springer.com/10.1007/978-3-030-11395-7_12.
NumFOCUS, Inc., Pandas. [Online]. Available: https://pandas . pydata . org/
(visited on 8 Jul. 2024).

M. Jansen, L. Wagner, A. Trivedi and A. Iosup, “Continuum: Automate infrastruc-
ture deployment and benchmarking in the compute continuum?”, in Proceedings of
the first FastContinuum workshop, in conjuncrtion with ICPE, coimbra, portugal,
april, 2023, 2023. [Online]. Available: https://atlarge-research.com/pdfs/

2023-fastcontinuum-continuum. pdf.

74

https://doi.org/10.1007/978-3-031-11217-1_23
https://doi.org/10.1007/978-3-031-11217-1_23
https://doi.org/10.1007/978-3-031-11217-1_23
https://doi.org/10.1007/978-3-031-11217-1_23
https://link.springer.com/10.1007/978-3-031-11217-1_23
https://link.springer.com/10.1007/978-3-031-11217-1_23
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://www.usenix.org/conference/nsdi20/presentation/vuppalapati
https://doi.org/10.1016/S0306-4379(02)00021-2
https://linkinghub.elsevier.com/retrieve/pii/S0306437902000212
https://linkinghub.elsevier.com/retrieve/pii/S0306437902000212
https://doi.org/10.1007/978-3-319-16486-1_61
https://link.springer.com/10.1007/978-3-319-16486-1_61
https://link.springer.com/10.1007/978-3-319-16486-1_61
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf
https://www.tpc.org/TPC_Documents_Current_Versions/pdf/TPC-DS_v3.2.0.pdf
https://doi.org/10.1007/978-3-030-11395-7_12
http://link.springer.com/10.1007/978-3-030-11395-7_12
https://pandas.pydata.org/
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf
https://atlarge-research.com/pdfs/2023-fastcontinuum-continuum.pdf

REFERENCES

[106]

[107]

[108]

[109]

[110]
[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

M. Hopkins, “Problems of PL/i for system programming”, ACM SIGPLAN Notices,
vol. 6, no. 9, pp. 89-91, Oct. 1971, 18SN: 0362-1340, 1558-1160. DOT: 10 . 1145/
942596.807063. [Online]. Available: https://dl.acm.org/doi/10.1145/942596.
807063.

The Apache Software Foundation., Apache hive. [Online]. Available: https: //
hive.apache.org/ (visited on 13 Jul. 2024).

Google Cloud, Google cloud storage. [Online]. Available: https://cloud.google.
com/storage (visited on 20 Aug. 2024).

Amazon AWS, Amazon s3. [Online]. Available: https://aws . amazon . com/s3/
(visited on 20 Aug. 2024).

MiniO, Inc., Minio. [Online|. Available: https://min.io/ (visited on 11 Jul. 2024).

OpenlO, Quick start. [Online]. Available: https://docs . openio.io/latest/
source/sandbox-guide/quickstart.html (visited on 20 Aug. 2024).

GitHub, seaweedfs/seaweedfs. [Online]. Available: https : / / github . com /
seaweedfs/seaweedfs (visited on 20 Aug. 2024).

InfluxData, Inc., Telegraf. [Online|. Available: https://www . influxdata . com/
time-series-platform/telegraf/ (visited on 11 Jul. 2024).

N. Chan, “A resource utilization analytics platform using grafana and telegraf for
the savio supercluster”, in Proceedings of the Practice and Experience in Advanced
Research Computing on Rise of the Machines (learning), Chicago IL USA: ACM,
28 Jul. 2019, pp. 1-6, 1SBN: 978-1-4503-7227-5. DOI: 10.1145/3332186.3333053.
[Online]. Available: https://dl.acm.org/doi/10.1145/3332186.3333053.

Y. Dong, Z. Li, Y. Tian, C. Sun, M. W. Godfrey and M. Nagappan, “Bash in
the wild: Language usage, code smells, and bugs”, ACM Transactions on Software
Engineering and Methodology, vol. 32, no. 1, pp. 1-22, 31 Jan. 2023, 1SSN: 1049-
331X, 1557-7392. pOI: 10.1145/3517193. [Online|. Available: https://dl.acm.
org/doi/10.1145/3517193.

H. Karau and R. Warren, High performance Spark: best practices for scaling and
optimizing Apache Spark. O’Reilly Media, Inc., 2017, 1SBN: 978-1-4919-4320-5.
InfluxData, Telegraf cpu plugin readme. [Online]. Available: https://github.com/
influxdata/telegraf/blob/master/plugins/inputs/cpu/README.md (visited
on 20 Aug. 2024).

InfluxData, Telegraf mem plugin readme. [Online]. Available: https://github.
com/influxdata/telegraf /blob/master/plugins/inputs/mem/README . md
(visited on 20 Aug. 2024).

75

https://doi.org/10.1145/942596.807063
https://doi.org/10.1145/942596.807063
https://dl.acm.org/doi/10.1145/942596.807063
https://dl.acm.org/doi/10.1145/942596.807063
https://hive.apache.org/
https://hive.apache.org/
https://cloud.google.com/storage
https://cloud.google.com/storage
https://aws.amazon.com/s3/
https://min.io/
https://docs.openio.io/latest/source/sandbox-guide/quickstart.html
https://docs.openio.io/latest/source/sandbox-guide/quickstart.html
https://github.com/seaweedfs/seaweedfs
https://github.com/seaweedfs/seaweedfs
https://www.influxdata.com/time-series-platform/telegraf/
https://www.influxdata.com/time-series-platform/telegraf/
https://doi.org/10.1145/3332186.3333053
https://dl.acm.org/doi/10.1145/3332186.3333053
https://doi.org/10.1145/3517193
https://dl.acm.org/doi/10.1145/3517193
https://dl.acm.org/doi/10.1145/3517193
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/cpu/README.md
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/cpu/README.md
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/mem/README.md
https://github.com/influxdata/telegraf/blob/master/plugins/inputs/mem/README.md

REFERENCES

[119] K. Sudnicina, “Task-in-pod scheduling support for kubernetes and apache spark
stack”, Bachelor Thesis, VU Amsterdam, 2024.

[120] M. Triola, Elementary statistics: Pearson New International Edition. Pearson Edu-
cation, 2013, 1SBN: 978-1-292-05578-7. [Online]. Available: https://books.google.
de/books?id=j1SpBwAAQBAJ.

[121] J. Ericson, M. Mohammadian and F. Santana, “Analysis of performance variability
in public cloud computing”, in 2017 IEEE International Conference on Information
Reuse and Integration (IRI), San Diego, CA: IEEE, Aug. 2017, pp. 308-314, ISBN:
978-1-5386-1562-1. DOI: 10.1109/IRI. 2017 .47. [Online|. Available: https://
ieeexplore.ieee.org/document/8102951/.

76

https://books.google.de/books?id=j1SpBwAAQBAJ
https://books.google.de/books?id=j1SpBwAAQBAJ
https://doi.org/10.1109/IRI.2017.47
https://ieeexplore.ieee.org/document/8102951/
https://ieeexplore.ieee.org/document/8102951/

Appendix A

Spark Configurations

1 apiVersion vl
kind Pod
metadata

name driver

N

5 spec
6 containers

7 - name sharebench

8 image lkmschulz2/sharebenchlatest
9 resources

10 requests

11 ephemeral -storage "30G"

12 limits

13 ephemeral -storage "40G"

14 nodeSelector

15 driver -node true

16 tolerations

17 - key role

18 value driver

19 operator Equal

20 effect NoSchedule

21 imagePullSecrets

22 - name regcred

Figure A.1: Driver pod template used in the experiments. Node selector and tolerations are
used for controlling where drivers are scheduled.

77

A. SPARK CONFIGURATIONS

apiVersion vi
kind Pod
metadata

name executor
labels
spark-app-id $(SPARK_APP_ID)

spec

containers
- name sharebench
image lkmschulz2/sharebenchlatest
resources
requests
ephemeral -storage "8G"
limits
ephemeral -storage "8G"
affinity
podAntiAffinity
requiredDuringSchedulinglgnoredDuringExecution
- labelSelector
matchExpressions
- key spark-app-id
operator In
values
- $(SPARK_APP_ID)
topologyKey "kubernetes.io/hostname"
imagePullSecrets
- name regcred

Figure A.2: Executor pod template used in the experiments. ($SPARK_APP_ID) is replaced
by a unique identifier for each of the concurrently active applications such that the affinity rules
don’t allow multiple executors of a single application on the same node and all applications
are distributed over all nodes in Node-Level Sharing.

78

Table A.1: Spark configuration used in the experiments.

Property Value
(a) All mechanisms
spark.driver.cores 4
spark.driver.memory 20g
spark.kubernetes.driver.request.cores 2100m
spark.kubernetes.driver.limit.cores 4000m
spark.executor.cores 8
spark.executor.memoryOverheadFactor 0.25
spark.kubernetes.executor.deleteOnTermination false
spark.kubernetes.allocation.batch.size 3
(b) Static Partitioning
spark.executor.instances {%J
spark.executor.memory 24g
spark.kubernetes.executor.request.cores 2000m
spark.kubernetes.executor.limit.cores 4000m
(¢) Dynamic Partitioning
spark.executor.memory 24g
spark.kubernetes.executor.request.cores 2000m
spark.kubernetes.executor.limit.cores 4000m
spark.dynamicAllocation.enabled true
spark.dyanmicAllocation.minExecutors 0
spark.dynamicAllocation.maxExecutors H#workers
spark.dynamicAllocation.initial Executors 0
spark.dynamicAllocation.executorldleTimeout 15s
spark.dynamicAllocation.shuffleTracking.enabled true
spark.dynamicAllocation.shuffieTracking.timeout 15s
spark.kubernetes.allocation.batch.size {%J
(d) Node-Level Sharing
spark.executor.instances H#workers
spark.executor.memory { #2;;% SJ
spark.kubernetes.executor.request.cores {%J

79

A. SPARK CONFIGURATIONS

80

Appendix B

Self Reflection

Although the outcome of this work is (mostly) satisfactory to me, the journey up to this
point was far from smooth with a plethora of both technical and non-technical issues. In
this chapter, I will give a brief self-reflection of the work that had a commanding influence
on my life over the past 3 months.

Before starting work on this thesis, I had virtually no experience with frameworks like
Spark and Kubernetes, concepts like containerization, and distributed computing as a
whole. With this, the majority of the first month was spent on trying to amass as good
of an overview of the field as possible in the limited time, mostly through reading. At the
same time, however, I had to start getting to grips with the software and tools required for
the work. Even though I genuinely consider myself a fast learner, diving into a whole field
of unknown software and software systems, often without or with minimal documentation,
was a very steep learning curve. Further compounded by the fact that I am hesitant to
ask for help when I feel that I should be able to solve an issue myself, it took over 2 weeks
to get a simple Spark application running in a Kubernetes cluster.

Even after conquering the initial hurdles, the work continued to be challenging in various
aspects. I cannot recall a single week where I did not have to get acquainted with at least
one new concept or tool to continue my work. Although often exhausting, these continuous
challenges allowed me to notice a significant improvement in my problem solving skills.
Problems that were similar in complexity to ones that took me days to solve at the
beginning were now often only a matter of hours. I was, and still am, nonetheless surprised
by the sheer quantity of things that had to be thought about, understood, engineered,
fixed, or improved. The thousands of lines of code and tens of pages in writing tell a part

of the story, but, in my view, fail to capture the full extent of my work and efforts.

81

B. SELF REFLECTION

Although I expected the thesis to be more challenging than the preceding courses in the
curriculum, I did not expect the divergence to be this significant. Furthermore, the thesis
required a drastically different approach, as both the solution and the requirements needed
to be developed at the same time, which is a contrast to the assignments of regular courses
where the latter is typically given and clearly defined. Although much more demanding,
I often found myself appreciating both the challenge and the freedom it allowed for my
solutions. However, not having a clear goal and consequently spending a lot of time
on issues for which the solutions ultimately did not contribute to the final work had a
noticeable impact on my motivation numerous times.

As the thesis is an individual work, a significant part of the 3 months was spent working
alone. Furthermore, since the curriculum does not include any courses on distributed
systems, conversations with my friends and fellow students about this work were limited
to very high levels of abstraction. I personally found myself to dislike this rather lonely
way of working and much prefer collaborative projects involving the management of a
diverse team and engaged conversations about the various and complex issues. However,
working by and for myself did have the advantage of a great level of freedom, not usually
found in collaborative work.

In conclusion, I am happy with my effort and the work I was able to produce. Looking
back, there are many things that could have gone better, yet through the issues and
struggles that I experienced I was able to develop and refine many of my skills, improve my
processes, and greatly extend my mental toolset. I also learned what I am still struggling
with, such as maintaining motivation after setbacks, which helps me to understand what
skills I still need to develop for my future work. I look forward to continuing this journey

in my next academic project(s) - I'm looking at you, Master Thesis!

82

	1 Introduction
	1.1 Problem Statement
	1.2 Research Questions
	1.3 Research Methodology
	1.4 Thesis Contributions
	1.5 Societal Relevance
	1.6 Plagiarism Declaration
	1.7 Thesis Structure

	2 Background and Related Work on Distributed Computing and Resource-Sharing
	2.1 Introduction to Data Centers: Relevance and Emerging Issues
	2.2 Introduction to OLAP and Interactive Workloads
	2.3 Resource Managers for Spark
	2.4 Resource-Sharing Mechanisms of Spark on Kubernetes
	2.5 Workloads in Related Work
	2.6 Related Work on Performance Characterization of Distributed Computing Systems
	2.7 Related Work on Automated Experiments

	3 ShareBench-Gen: Design and Implementation of the Workload Generator
	3.1 Requirements Analysis
	3.2 Conceptual Design
	3.3 Implementation with TPC-DS Queries
	3.4 Evaluation
	3.5 Limitations
	3.6 Future Work
	3.7 Summary

	4 ShareBench-Base: Design and Implementation of the Infrastructure Framework
	4.1 Requirements Analysis
	4.2 Conceptual Design
	4.3 Implementation for Spark SQL on Kubernetes
	4.4 Evaluation
	4.5 Limitations and Future Work
	4.6 Summary

	5 Performance Characterization of Resource Sharing Mechanisms of Spark on Kubernetes
	5.1 Experiment Setup
	5.2 Workloads
	5.3 Findings
	5.4 Limitations
	5.5 Summary

	6 Conclusion
	6.1 Summary of the Work
	6.2 Summary and Future Work

	References
	A Spark Configurations
	B Self Reflection

