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Abstract

Data-intensive applications are used across different sectors, such as finance,

healthcare, government, science, and entertainment. With increased data growth,

special tools are needed to analyze and manage this Big Data. Examples of

such tools include Apache Spark, Dask, Knative, and other frameworks. These

frameworks are designed to handle large datasets by distributing processing

tasks across multiple executors, either on local machines or using external tools

like Kubernetes.

This project focuses on the Apache Spark framework, but the findings and

methodologies are also relevant to other runtime application frameworks. When

we submit an Apache Spark application within the Kubernetes cluster, a central

coordinator called Spark Driver is created as a Pod within Kubernetes. Inside

the Pod, Spark Driver breaks down the application into smaller tasks that can

run concurrently on worker nodes. However, Kubernetes is not aware of any

processes running inside the Pods, neglecting Spark Driver’s task scheduling

process. The problem with this lack of awareness is that it causes inefficiencies,

as Kubernetes cannot adapt to the Spark Driver’s task scheduling process.

To address this issue, we propose designing and developing an external sched-

uler, implemented as a Kubernetes Operator, to receive tasks from Spark Driver

and manage their execution on worker nodes.

Our approach involves three main objectives: (i) selecting an appropriate

framework for creating the Operator, (ii) designing and implementing a Task-

aware scheduler, and (iii) evaluating the impact of this new scheduler on the

performance of the application runtime.

In this project, we compare different Operator creator frameworks, design and

implement a prototype of an external Task-aware scheduler, and evaluate its

performance within the Spark-Kubernetes system using the TPC-DS bench-

mark workload.
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1

Introduction

Every day, around 400 million terabytes of data are created, and the amount of data

generated each year continues to grow exponentially [1]. This data is highly significant

and used in many sectors, including healthcare, education, finance, and entertainment [2].

Storing and analyzing all this data requires substantial computational power that local

computers cannot offer.

As a result, cloud computing - the fifth generation of computing technology - has be-

come extremely popular and highly utilized in recent years [3]. Cloud computing enables

widespread, convenient, on-demand network access to a shared pool of computing re-

sources, including networks, servers, storage, applications, and services. These resources

can be quickly provisioned and released with minimal management effort or interaction

with service providers [4].

Despite its advantages, cloud computing still faces several limitations and challenges

that must be addressed. Such challenges include scalability, data management, resource

allocation, interoperability, and security and privacy [5]. Since cloud-based applications

and frameworks often handle large datasets, effective resource management and scheduling

are crucial for maintaining system performance.

Cloud computing frameworks such as Apache Spark [6], Dask [7], Knative [8], and others

are designed to perform processing tasks on massive data sets efficiently, distributing these

tasks across multiple computers, either locally or with the help of external tools. One widely

used tool for managing cloud-based applications is Kubernetes [9]. Kubernetes simplifies

the deployment, scaling and management of containerized applications [10]. Kubernetes’

smallest deployment unit is called Pod.

Many complex applications, including Apache Spark, manage independent units of work

(tasks) within the Kubernetes Pods [11]. This process introduces challenges because the

1
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Figure 1.1: Spark application execution process.

Kubernetes scheduler is unaware of these tasks, leading to decreased performance and

complicating the development of more complex scheduling algorithms.

1.1 Background

With the vast data growth, many new distributed computing frameworks have been devel-

oped, leading to the appearance of a subset of these frameworks — distributed application

runtimes — that focus specifically on the runtime environment and execution of distributed

applications [12]. These runtimes provide frameworks and tools for abstracting the com-

plex underlying infrastructure. Examples of such distributed application runtimes include

Apache Spark, Dask, and Knative, each offering unique features and capabilities.

This section introduces general concepts necessary for formulating research questions.

Chapter 2 provides a more detailed description of the frameworks and internal workflows.

Apache Spark

Apache Spark [6] is a distributed computing framework designed to work with a cluster

of computers, known as workers, to execute tasks. Spark manages the execution of a

computational program or application by breaking it down into smaller, independently

runnable tasks that are then executed on worker nodes. The general workflow is depicted

in Figure 1.1. When a Spark application 1 is submitted, a Spark Driver 2 is created.

The Spark Driver decomposes the application into smaller tasks, which are sent to worker

nodes 3 for execution. The worker nodes run these tasks and report their execution

status and completion to the Spark Driver.

Kubernetes

Kubernetes [9] is a powerful container orchestration platform for automating containerized

applications’ deployment, scaling, and management. It consists of a cluster of nodes,

2
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Figure 1.2: Spark application execution with Kubernetes.

including a controller node that manages the API server and scheduler, and worker nodes

that run containers. Pods are the smallest deployable units in Kubernetes. The scheduler,

managed by the controller node, allocates Pods to worker nodes based on CPU and memory

utilization, node capacity and Pod affinity/anti-affinity rules [13].

In the context of Apache Spark, Kubernetes serves as a resource manager to simplify

Spark’s resource allocation and scaling capabilities. Spark applications are containerized

into Docker containers and deployed as Pods within the Kubernetes cluster. While Kuber-

netes handles the scheduling of Pods, Apache Spark manages the execution of tasks within

these Pods. Kubernetes is not aware of the individual tasks managed by Spark [11].

The Spark-Kubernetes workflow is illustrated in Figure 1.2. The Spark Driver 2 is

created as Pod within Kubernetes cluster A and communicates with the Kubernetes

API and scheduler 1 . The Spark Driver performs the same steps as in a local Spark

application environment, but also creates executor nodes 3 as Pods in the Kubernetes

cluster.

Scheduler

A scheduler is an essential component of a distributed computing system. It makes dynamic

decisions about task and data placement and directs tasks to different nodes in the cluster

at the right time. The scheduler is defined by its architecture, mechanisms, and the

actions it enables. The interaction of these components determines the overall system’s

performance [14]. Both Apache Spark and Kubernetes have their own schedulers, which

operate at different levels and manage different resources within the system.

3
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Kubernetes Operator

An Operator [15] in Kubernetes is a software extension that automates the management of

applications and their components using custom resources. Several frameworks are avail-

able for creating and deploying Operators, offering a set of functional Kubernetes compo-

nents and developer tools to simplify the creation of an Operator [16]. Examples of such

frameworks include Operator Framework [16], Kubernetes Operator Pythonic Framework

(Kopf) [17], and Metacontroller [18].

1.2 Problem Statement

Complex application frameworks like Apache Spark or Dask operate on large data sets.

When an application is submitted to these frameworks, it describes the procedure that must

be executed on the data. The framework then divides this application into smaller stages

known as tasks, which are executed independently on worker nodes. Each framework

has its own task scheduler that determines the order in which tasks are executed [19].

However, frameworks task-scheduling algorithms are relatively simple, which can result in

suboptimal resource management and runtime performance.

To improve the scheduling workflow in these frameworks, for example, by implementing

an energy-aware scheduler or a more complex scheduling algorithm, one needs to modify

each local scheduler individually, as shown in Figure 1.3. This approach is time-consuming

and inefficient. Instead, a unified scheduler outside the frameworks can be developed and

applied across all frameworks with a single implementation.

This external scheduler could be integrated into the Kubernetes cluster environment and

implemented as an Operator, as shown in Figure 1.4. In this setup, an external scheduler

A is introduced into the Kubernetes cluster, where it receives data from the Spark Driver

through the Kubernetes API 1 . The scheduler then creates executor nodes and allocates

the tasks to these nodes 2 . Upon completion of the tasks, the executors notify the Spark

Driver of their status.

Currently, there are limitations in running Apache Spark with Kubernetes due to dif-

ferences in their scheduling mechanisms. Kubernetes operates at the Pod level, while the

schedulable units in Apache Spark are the tasks created within Pods. As a result, the

Kubernetes scheduler is unaware of these tasks and cannot adjust the scheduling based

on task-specific needs. Therefore, a novel scheduler that operates directly on tasks rather

than Pods must address these limitations.
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Several tools are available for creating a scheduler, and the choice of tool can signifi-

cantly impact a system’s runtime and efficiency. Since the end product system handles

extensive data and requires low latency, selecting a suitable Operator framework is crucial

for achieving optimal performance.

1.3 Research Questions and Methodology

To address this problem, we formulated the following general research question: How to

create a Kubernetes external scheduler that is aware of tasks generated by

Spark Driver? For this project, we have broken this general question down into three

specific sub-questions:

R.Q.1: What is the comparative performance of the Operator Frame-
work, Kopf, and Metacontroller in terms of the time taken to create a
Pod in the Kubernetes environment?

An Operator is a software extension that allows developers to implement custom controller

logic in Kubernetes. Various frameworks are available for creating Kubernetes Operators.

5
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Figure 1.4: Spark application execution with external scheduler in Kubernetes cluster.

These frameworks operate on different programming languages, which can lead to inconsis-

tencies in runtime performance and efficiency. Choosing a suitable framework is essential

as the scheduler operates on large datasets and requires low latency for effective operation.

However, there is a lack of comprehensive comparison across these frameworks, as no ex-

periments have been conducted to evaluate their relative performances. This gap in prior

research and measurements makes this research question particularly challenging.

Our methodology follows standard benchmarking practices in a field, specifically adapt-

ing the Graphalytics benchmarking methodology [20] for our context. Introduced in 2016,

Graphalytics is a benchmark designed for graph analysis platforms, but its principles can

be extended to other domains, including Kubernetes Operators [20]. To benchmark the

performance of three well-known frameworks - Operator Framework (we use its component

Operator SDK), Kopf, and Metacontroller - in terms of Pod creation, we design a similar

benchmarking approach that defines essential components as workload, system, procedure,

and goal.

The workload for our benchmarking is to create a Pod in a Kubernetes environment

triggered by a Custom Resource (CR) Object. The process is as follows: we create a

Custom Resource Object, the Operator detects CR Object creation, and instantiates a

Pod. The system under test includes the Operator SDK, Kopf, and Metacontroller. Each

of these frameworks’ implementation is deployed in a Kubernetes cluster, with the cluster

configuration maintained consistently across tests to ensure a fair comparison.

The benchmarking procedure involves deploying a Kubernetes cluster and each frame-

6
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work individually. For each framework, we execute the workload and measure the runtime

and overhead. This benchmarking aims to compare the performance of different Kuber-

netes Operator frameworks based on the time taken to create a Pod. The specific objectives

are to identify the framework with the lowest latency, assess the reliability of each frame-

work, and provide insights into the trade-offs between different programming languages

and frameworks in the context of Kubernetes Operators.

R.Q.2: How to design Task-aware scheduler compatible with Kubernetes
Apache Spark stack?

Kubernetes is a container orchestration platform designed to automate the deployment,

scaling, and management of containerised applications. In this context, a Task-aware

scheduler is a component that manages individual tasks within a distributed application

and operates externally to the central coordinator. For this research question, a compatible

scheduler is one that can function well with Kubernetes and Apache Spark frameworks.

Consideration of all these elements makes the design process challenging.

To answer this question, we aim to explore a Task-aware scheduler’s architecture and

working principles within Kubernetes, which involves designing and implementing a pro-

totype solution by modifying the source code of the latest stable version of Apache Spark

(v3.5.1). Modifications should enable data transmission to the Operator. Simultaneously,

we need to develop custom logic for the Operator to receive and execute the data. We apply

the atLarge design visions [21] to this novel design, creating a new solution for integrating

a Task-aware scheduler with the Kubernetes Apache Spark stack.

R.Q.3: What is the impact on the performance of moving the scheduler
outside of the Spark framework in the Kubernetes cluster?

This research question evaluates the performance implications of moving a Task-aware

scheduler from the Apache Spark framework to an external component managed by Ku-

bernetes. In contrast to the built-in scheduler of Apache Spark, specifically designed for

distributed computing tasks, a Kubernetes scheduling component introduces a novel Task-

aware scheduler.

To answer this research question, we use an existing benchmark framework to measure

the runtimes of the original Spark system and compare them with the performance of

the prototype scheduler developed in RQ2. This research question establishes whether

the external Task-aware scheduler is as efficient (or at least performs comparably) as the

7
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existing Spark-Kubernetes system scheduler. Additionally, this analysis indicates whether

further research and enhancement of the Task-aware scheduler are justified.

1.4 Thesis Contributions

This thesis’s contributions can be grouped into three main areas: conceptual, technical

and societal. The details of each contribution are presented below.

• Conceptual: findings of comparative analysis of the frameworks described in RQ1

• Conceptual: design of the external Task-aware scheduler

• Technical: implementation, deployment, execution and results collection of three

frameworks for Operator creation

• Technical: implementation of the prototype of the external Task-aware scheduler

• Technical: execution of the experimental evaluation of the external Task-aware

scheduler

• Societal: contribution to open-source project

• Societal: contribution to performance improvement in broad Kubernetes stack, par-

tially related to Big Data

• Societal: satisfaction of grand social challenges listed in the Computer System man-

ifesto [22]

These contributions together lead to a further publication.

1.5 Thesis Reading Guide

The first chapter briefly introduces the topic and problems solved within this project.

Chapter 2 provides the background and related work information for all subsequent chap-

ters.

The main body of the thesis consists of three chapters, each addressing one of the research

questions. Chapter 3 compares the frameworks, answering RQ1. Chapter 4 provides a

design of a Task-aware scheduler and answers RQ2. Chapter 5, answering RQ3, evaluates

a system with the implemented prototype.

8
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2

Background and Related Work

This section provides an overview of three frameworks for creating Kubernetes Opera-

tors, highlighting their advantages and disadvantages. It also covers related research on

scheduling methods for Spark and Kubernetes.

2.1 Kubernetes Operator Pythonic Framework (Kopf)

Kubernetes Operator Pythonic Framework (Kopf) is a Python-based framework and library

designed to simplify the creation of Kubernetes Operators with minimal code [23]. Initially

started as a Zalando [24] incubator project developed by Sergey Vasilyev, the project has

been in maintenance mode since 2021. While it continues to receive necessary upgrades,

no new features have been added.

Kopf is described as a simple yet powerful framework to use [23]. It is intuitive, supports

all Kubernetes resources (CRs, built-in resources, etc.), offers various levels of handlers,

and provides additional toolkits and integrations. Its comprehensive documentation makes

it accessible to users at all levels [17].

The continuous popularity of Python, as shown in the TIOBE index for 2024 [25], further

highlights the appeal of Kopf. According to TIOBE statistics [25], Python holds the first

place with a 16.33% rating score, significantly higher than C (9.98%) or Golang (1.60%).

Python’s widespread popularity implies that many developers are familiar with it and

may prefer using it over learning a new language. Additionally, many books, tutorials,

and other resources for learning Python make it highly attractive to beginners. Python’s

syntax does not require extensive additional studies, making it comparably easy to develop

an Operator.

11



2. BACKGROUND AND RELATED WORK

Table 2.1: Advantages and Disadvantages of Kopf

Advantages Disadvantages

Simple and intuitive to use Slower runtime compared to Go
Supports all Kubernetes resources Limited to Python (has slower perfor-

mance)
Comprehensive documentation GIL limits concurrency
Popular language, many learning re-
sources

Dynamic typing impact compilation
speed

Minimal code needed to create Operators Not ideal for performance-critical appli-
cations

Compared to languages like Go, a significant drawback of Python is its slower runtime.

This distinction in runtime performance can be due to several factors, including typing

style, execution mode and concurrency model [26]. Python is a dynamically typed lan-

guage, meaning that the object type is determined at runtime. This dynamic typing can

impact compilation speed, as Python needs to infer types during execution. In terms of

execution mode, Python initially interprets bytecode and then compiles functions just-

in-time. Additionally, Python’s concurrency model is based on a global interpreter lock

(GIL), which restricts only one thread from executing Python code at a time.

On the contrary, Go is compiled ahead-of-time, resulting in faster execution as the code

is already compiled before runtime. It is also statically typed, allowing a program to

compile faster as type declarations are determined at compile time. Moreover, Go utilizes

its own Scheduler and provides user threads called goroutimes, allowing for more efficient

concurrent execution without the limitations imposed by the GIL [27].

To conclude, while Kopf offers a straightforward and beginner-friendly framework for

creating Operators in Kubernetes, it is essential to consider that Operators developed

with Kopf may have slower runtimes compared to frameworks that utilize other languages

like Go. This runtime difference can be significant, especially for performance-critical

applications or those requiring high concurrency. Table 2.1 summarizes the advantages

and disadvantages of Kopf.

12
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2.2 Metacontroller

The closest equivalent to Kopf is Metacontroller. Like Kopf, Metacontroller aims to sim-

plify the development of Kubernetes Operators without requiring profound knowledge of

Kubernetes or complex programming languages [28]. Metacontroller began as a continu-

ation of work on Google Kubernetes Engine (GKE) [29] and has since transferred into a

community-maintained project [30]. Developed in 2017, Metacontroller is backed up by

Google, the original developer of Kubernetes [28].

Unlike Kopf, where the core logic is written directly within the framework, Metacontroller

supports two additional methods for handling the domain logic: Function-as-a-Service

(FaaS) and In-cluster HTTP API deployments. Faas is a cloud-computing service that

allows users to run functions (code snippets) in response to events without managing server

infrastructure [31]. In-cluster HTTP API deployments involve deploying HTTP APIs that

respond to the changes in CRs within the Kubernetes cluster. The primary logic of the

Operator is contained within the FaaS functions or HTTP API deployments that execute

actions based on the state of CRs [28].

A fundamental component in Metacontroller’s architecture is the use of webhooks. A

webhook is an HTTP-based callback function that allows one system to send real-time data

to another based on the occurrence of specific events [32]. In Metacontroller, webhooks

foster communication between the code logic and the Kubernetes API. Whether running

as a FaaS function or an in-cluster HTTP API, the domain logic code acts as a webhook

endpoint. The code and Kubernetes API interact by exchanging JSON [33] files. When

changes in the CRs happen, Metacontroller sends an HTTP request to a webhook endpoint

together with a JSON payload that describes the current state of the CR [18]. Since

HTTP APIs are language agnostics (are independent of the programming language being

used), Metacontroller allows domain logic to be written in any preferred programming

language [28].

One potential disadvantage of Metacontroller is performance overhead. Webhooks and

external HTTP endpoints can introduce latency, and the communication between Meta-

controller and the webhook server may be significantly slower than operations within the

Kubernetes cluster. Additionally, webhook frameworks have their own constraints, such

as HTTP API timeout restrictions [28]. More issues may occur at a large-scale system as

scaling and maintaining numerous webhooks can introduce additional operational overhead

and complexity.

13



2. BACKGROUND AND RELATED WORK

Table 2.2: Advantages and Disadvantages of Metacontroller

Advantages Disadvantages

Supports multiple programming lan-
guages

Potential performance overhead due to
webhooks

Allows domain logic to be written in any
language

External HTTP endpoints can introduce
latency

Supports Function-as-a-Service (FaaS) Complexity in large-scale systems
Flexible architecture using webhooks HTTP API timeout restrictions
Community-maintained project Additional operational overhead for scal-

ing and maintenance

In summary, Metacontroller provides a flexible way to create Kubernetes Operators using

any programming language developer prefers. However, this flexibility has a trade-off in

performance and potential complexity, especially in large-scale environments. Table 2.2

depicts the advantages and disadvantages of the Metacontroller framework.

2.3 Operator SDK

In contrast to Kopf and Metacontroller, Operator SDK is not a framework - it is a Software

Development Kit (SDK), which generates the skeleton code for an Operator that users

can enhance with the required domain logic [28]. - an open-source toolkit designed to

manage Kubernetes Operators automatically and at scale [34]. However, it is considered

a complicated tool for writing Operators [28]. Additionally, both Operator SDK and

Operator Framework only support the Go programming language.

Go (or Golang) [35] was developed by Google in 2009 for constructing backend software

services. From the beginning, it was designed to perform at a comparable level with

languages like C and C++ while maintaining a relatively easy syntax similar to Python

or JavaScript [36]. As a compiled language, Go offers faster code execution. It also has

built-in support for concurrency, allowing it to handle multiple tasks simultaneously. The

main advantages of Go include speed, concurrency and simplicity. However, Go is still

gaining popularity and does not have as many study resources as Python. Additionally,

it has some unique concepts like goroutines that developers need to familiarize themselves

14



2.4 Local Spark Schedulers

with [37]. Overall, Go is a powerful and relatively simple language with some learning

curves.

Operator SDK provides the necessary tools to build, test and package Operators. It ini-

tially helps users integrate their application business logic with the Kubernetes API, allows

for application improvement, and provides a user experience of cloud services. Operator

SDK uses the controller-runtime libraries (a set of Go libraries for building Controllers [38])

that simplify writing Operators by providing high-level APIs and abstractions, tools for

code generation and various extensions to cover the most common Operator use cases [34].

Additionally, Kubernetes is written in Go, making the interaction of Go and Kubernetes

API robust. Using Operator SDK with Go provides a more complex yet more substantial

implementation, with no limitations on the functionality of a custom Operator [39]. Devel-

oping an Operator with Go is the most popular among these options, as 71% of Operators

on OperatorHub [40] (Kubernetes community to share Operators) are written in Go.

Despite its strengths, Operator SDK has several limitations. Firstly, it supports only the

Go programming language for writing Operator logic, requiring developers to be familiar

with Go. Secondly, it is more complex to use and learn than Kopf or Metacontroller, as it

requires a solid understanding of Kubernetes concepts, APIs, and Operator concepts like

Manifests. Lastly, Operator SDK is not generally supported on Windows, producing an

additional challenge for developers unfamiliar with Linux. While there are options to use

a virtual machine or Windows Subsystem for Linux (WSL) to install Operator SDK on

Windows, there are no specific interfaces for Windows, meaning that development would

occur primarily via the Linux command-line interface.

To conclude, Operator SDK is one of the most powerful but also one of the most complex

toolkits for building Kubernetes operators. It requires a good understanding of Kubernetes,

Operators, and the Go language, which makes it less friendly for beginners. However, its

flexibility and robustness make it a substantial preference for experienced developers look-

ing to create highly functional and scalable Operators. The advantages and disadvantages

of Operator SDK are shown in Table 2.3

2.4 Local Spark Schedulers

The imperfections of the Apache Spark scheduling system have led to the development

of new custom schedulers. These custom schedulers generally fall into two categories:

those that enhance the existing Spark stand-alone scheduler and those that integrate with

Kubernetes but do not go beyond the Pod level. In this section, we discuss enhancements

15



2. BACKGROUND AND RELATED WORK

Table 2.3: Advantages and Disadvantages of Operator SDK

Advantages Disadvantages

Provides tools to build, test, and package
Operators

Requires familiarity with Go language

Supports multiple development options
(Go, Ansible, Helm)

More complex to use and learn than Kopf
or Metacontroller

High flexibility and robustness with Go Not generally supported on Windows
Built-in support for Kubernetes API Requires a solid understanding of Kuber-

netes concepts
Widely used and supported by the com-
munity

Development primarily via Linux
command-line interface

to local Spark schedulers, and in the next section, we cover custom schedulers built on

Kubernetes.

One example of a local scheduler is RUPAM. Proposed in 2018, Rupam is a heterogeneity-

aware task scheduler whose primary goal is to improve performance by considering task-

level resource characteristics and underlying hardware characteristics preserving data lo-

cality [41]. While being successful and improving the performance up to 62.3% compared

to the standard Spark scheduler, RUPAM enhances the existing local scheduling technique

but does not address the issue of scheduling tasks within the Kubernetes cluster.

Numerous other research publications such as [42] and [43] propose novel Job scheduling

algorithms and approaches like greedy Best-Fit-Decreasing (BFD) algorithm [42], dynamic

adaptive scheduling approach [43] and others. They follow a similar goal of improving

the existent performance of Apache Spark, reaching it from different perspectives. For

instance, [42] research aims to reduce the cost of Virtual Machines usage in the cloud

environment, whereas [43] research approaches the trade-off problem between latency and

throughput in the batch-based streaming systems. Job scheduling is a prevalent topic in

the Spark scheduling research area. However, similar to RUPAM, these researches target

only built-in Spark schedulers and do not address the problem of scheduling the Spark-

Kubernetes ecosystem.
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2.5 Kubernetes Custom Schedulers

Custom Kubernetes schedulers like Volcano [44] or Yunikorn [45] are widely used when

running Spark on Kubernetes. Volcano is a Kubernetes Native Batch System for deploy-

ing high-performance workloads on Kubernetes. It is the only scheduling project of Cloud

Native Computing Foundation (CNCF) [46] that is designed to provide support for diverse

scheduling algorithms, multi-architecture computing, and mainstream computing frame-

works leading to more efficient scheduling [44].

YuniKorn is a universal resource scheduler developed initially for YARN [47] and Kuber-

netes [48]. The main goal of YuniKorn is to unify the existing schedulers in Kubernetes,

such as the default scheduler for services and scheduler extensions like Kube-batch [49]

for batch scheduling, as well as YARN’s Capacity Scheduler and Fair Scheduler for batch

workloads [48].

Both schedulers provide some advanced scheduling capabilities like gang scheduling [50]

or support of various workflows and fine-grained scheduling of resources [51]. However,

these schedulers are built on top of Kubernetes and thus cannot operate on the levels that

Kubernetes cannot manage, namely beyond Pods.
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3

Operator Framework Comparison

This chapter answers RQ1 - What is the comparative performance of the Operator Frame-

work, Kopf, and Metacontroller in terms of the time taken to create a Pod in the Kubernetes

environment?

The previous chapter described each chosen framework and provided background in-

formation. Here, we explain the experiment design, setup, and evaluation of the results.

Appendix A contains the hardware and software specifications, executable commands, and

their order.

3.1 Overview

As of 2022, Kubernetes was the leading container orchestration tool for running workloads

in containers at scale [52]. Kubernetes simplifies the process of running applications and

plays a crucial role in their design, deployment, and management, making these processes

more straightforward and ensuring high availability for users.

The user interacts with Kubernetes via the command line interface tool kubectl that

sends requests to the Kube-apiserver [13]. The Kube-apiserver, in turn, manages all the

components on the node and extracts all the necessary data from the key-value storage

Etcd. The user manages the resources Kubernetes has (whenever such communication

occurs) through the kubectl or Kubernetes Dashboard (a graphical user interface alterna-

tive to kubectl). There are various types of resources, such as Pods (the smallest unit in

Kubernetes) or ReplicatSets (the exact copy of the Pod) [13]. Also, Kubernetes supports

Custom Resources (CRs) that enable users to create and interact with the resources they

require in the same way as with the built-in Kubernetes resources. Such CRs are frequently

used with Operators - software extensions of Kubernetes that allow new functionality to be
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Figure 3.1: the process of interaction of an Operator with CRs and Kubernetes API [39].

added. Operators act as controllers, constantly checking the status of the CRs and taking

actions to align the current state with the desired state specified within the CR [13]. The

process is illustrated in Figure 3.1.

There are multiple frameworks for creating Operators for Kubernetes, each support-

ing different languages and implementation approaches. Some of these frameworks are

Operator SDK [16], Kubernetes Operator Pythonic Framework (Kopf) [17], and Metacon-

troller [18].

Despite the large number of libraries and tools available for creating Operators for Ku-

bernetes, a thorough comparison of these frameworks has not yet been conducted, posing

challenges in selecting the most suitable framework. While some blog posts like [39] have

attempted to compare various frameworks based on simplicity of implementation, limita-

tions, and popularity, they lack experimental analysis of runtime differences among these

frameworks.

A comprehensive comparison of various frameworks benefits developers who want to

select the right tool based on their specific requirements. It also lays the foundation for

future research to identify the most efficient framework, encouraging the development of

robust and scalable Kubernetes solutions.

3.2 Design Requirements for Operator Frameworks

This section describes the requirements for the Operator design. These requirements en-

sure that the design is aligned with the objectives and constraints and provide a foundation
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Table 3.1: Requirements for Operator creation framework

ID Requirement

R1 The Operator must be efficient and handle a significant volume of tasks.
R2 The programming language used for the Operator should have high runtime per-

formance
R3 The framework should be straightforward, allowing developers to create Operators

with minimal effort.
R4 The chosen framework should provide a balance between runtime speed and im-

plementation simplicity

for evaluating the performance and success of the Operator. Table 3.1 provides the require-

ments for the Operator’s design.

This paper aims to prototype a Task-aware scheduler built as an Operator. In this

experiment, the scheduler is deployed within a single cluster, managing a limited number

of tasks in parallel. However, in the real-world scenario, the scheduler must handle a

significant volume of tasks concurrently. Therefore, the Operator’s runtime efficiency is

crucial (R1). The choice of framework can significantly impact runtime performance,

influenced by factors such as the programming language used. For instance, Python [53]

tends to have slower runtimes [26] compared to other languages like Go [35] or PHP [54]

(R2).

Furthermore, an Operator framework should be relatively easy to implement, ensuring a

lower entry barrier for beginners (R3). An ideal framework would be a trade-off between

runtime speed and implementation simplicity, enabling the creation of scalable and efficient

Operators with minimal development effort (R4).

3.3 Design of Framework Comparison Experiment

The experiment described in this chapter aims to compare the runtimes and simplicity of

implementation of various frameworks and toolkits that help create Kubernetes Operators.

No such comparison has been made before, so this research aims to provide a more informed

and reasonable choice of frameworks for Kubernetes Operators.

Although many frameworks are available, this research focuses on Kopf, Metacontroller

and Operator SDK. We chose frameworks based on their popularity, simplicity of imple-
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mentation, programming language support, and available documentation. Kopf is consid-

ered to be the most straightforward framework for implementing an Operator. However, it

only supports Python, which might affect its runtime performance. Metacontroller, while

slightly more complex to implement, allows developers to choose any preferred program-

ming language. For this experiment, Metacontroller is implemented with both Python

and Go. Operator SDK with Go is the most complex toolkit, but its use of Go might

significantly enhance runtime performance due to Go’s efficiency.

Alternative frameworks considered included Operator SDK with Ansible or Helm, which

are easier to build than Operator SDK with Go but do not offer flexible functionality.

Another alternative is Side8’s k8s-operator, the direct equivalent of Kopf, which functions

well only with scripts written in shell or bash [28]. The most complicated approach is

writing an Operator using a bare programming language like Java or Kotlin. However,

this method requires a deep and detailed understanding of Kubernetes and Operators [39].

In this experiment, Kopf, Metacontroller, and Operator SDK with Go are independent

variables, while the comparison metrics are dependent variables. The quantitative metrics

include the mean, median, and interquartile range (IQR) of the runtimes of each frame-

work. The general distribution of runtime frequencies is visualized using violin plots. The

definitions of the objects are identical for each framework to ensure a fair comparison.

Similarly, the core logic implemented is kept consistent and adjusted only for the specific

programming language needs.

The runtime of each framework is tested under two conditions: with and without Pod

creation. Each framework is coded to create a new Pod when the YAML file of the Custom

Resource Object is created inside the Kubernetes cluster. To measure the overhead, the

core logic is modified to output a print statement without making a Pod. We repeat both

procedures 100 times and save each iteration’s runtimes (milliseconds) in an external CSV

file. We repeat this process for each framework and collect all results in a single file used

for the analysis. As a control benchmark, we also measure the runtimes of the Kubernetes

built-in Pod creator.

Overhead is an essential measure describing the additional time frameworks require to

create a Pod compared to running the program without making a Pod. Overhead directly

impacts a framework’s overall performance and efficiency. When comparing multiple frame-

works, overhead is a critical factor. It helps select the framework that performs well and

has minimal additional costs associated with auxiliary tasks. In our evaluation, overhead
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is computed as follows:

Overhead = Mean runtime with Pod − Mean runtime without Pod

This design and evaluation approach leads to a comprehensive and objective decision

regarding which toolkit better addresses this project’s needs. We additionally compare the

custom Operator to a built-in Kubernetes object creator, providing a benchmark to un-

derstand how the custom Operator performs relative to native Kubernetes functionalities.

Each framework is assessed based on the availability and quality of documentation and

tutorials to measure implementation simplicity. Additionally, the subjective experiences

of a developer unfamiliar with these frameworks (the author) are considered. The de-

veloper reports on the ease of understanding and applying the frameworks, noting any

challenges. Both objective resources and subjective experiences are combined to evaluate

implementation simplicity comprehensively.

We perform this experiment in both local and cluster environments for more compre-

hensive results. This approach allows us to evaluate the performance and scalability of our

solution under different conditions. By comparing the outcomes from these environments,

we can gain insights into potential bottlenecks and optimize the scheduler for various de-

ployment scenarios.

This experiment provides a detailed and fair comparison of Kopf, Metacontroller, and

Operator SDK by evaluating their runtimes and implementation simplicity. The results

offer valuable insights into each framework’s performance and efficiency, aiding in selecting

the most suitable tool for creating an external Task-aware scheduler.

3.4 Setup for the Framework Comparison Experiment

We run the experiment on a local machine and a cluster. The environment specifica-

tions and framework installation procedures are listed in Appendix A. Note that the local

machine used is significantly less powerful, directly affecting the results.

Core logic

In all frameworks, we implement a core logic that creates a Pod whenever a Custom Re-

source Object is created. The Custom Resource Definition (CRD) and Controller files (used

only for Metacontroller and Operator SDK) are created manually for Kopf and Metacon-

troller; Operator SDK creates them automatically. These files and the CR objects are

written as YAML files (a human-friendly data serialization language for all programming
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Figure 3.2: Workflow of an Operator.

languages [55]). CRD, Controller and Object files are created using kubectl apply com-

mand. Using the kubectl create command is also possible, but it does not maintain the

changes applied to a resource [52].

An Operator’s workflow is illustrated in Figure 3.2. A new CR Object 2 can be created

once CRD and Controller files are applied to the Kubernetes cluster. This Object has its

own name. An Operator 1 is coded to watch for changes in the Objects of a newly

defined type (CR) and react by creating a new Pod 3 with the name specified as the

name of the CR Object. An example of such an Object is:

apiVersion: example.com/v1

kind: MyPod

metadata:

name: mypod-2

This is an example of an Object used for the Metacontroller framework. It is of the MyPod

kind (defined using CRD) and has the name mypod-2 (mypod-1 is used with Kopf, mypod-

3 with Operator SDK). Once this Object is created, the code constructs a Pod named

mypod-2 respectively.

In general, the procedure can be described as follows:

1. create CRD within the cluster

2. create Controller within the cluster (if needed)

3. run the core logic code in another terminal (runs endlessly before a keyboard inter-

ruption to watch for changes in the CR objects)

4. create a CR Object within the cluster

5. check if a new Pod has been created
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This procedure applies to Kopf and Metacontroller; steps 1 - 3 differ for Operator SDK.

The workflow for each framework is described in more detail in Appendix A.

To measure the runtimes, we create a PowerShell program that starts a timer when

CRD and Controller files are created, and the core logic code is running. The program

measures how long it takes to run the kubectl apply command, then saves this runtime in

milliseconds. The timer only counts the time it takes to create an Object, not to delete it.

After the 100 iterations, all runtimes are saved in a CSV file.

We execute these procedures on a local device and then rerun all the same steps in

the cluster. We analyze the obtained data using Python pandas, seaborn, and mat-

plotlib.pyplot libraries. We visualize the frequency of runtimes using violin plots for three

frameworks (two plots for Metacontroller). We also calculate the mean, median, and in-

terquartile range (IQR) in Python.

3.5 Results of the Framework Comparison Experiment

This section provides the results of the runtime comparison between three different frame-

works. The data collected from 100 runs for each framework (both with and without Pod

creation) is summarized to detect performance differences.

We visualize the runtimes distribution using violin plots sorted by median values in as-

cending order. For the violin plots, the X-axis represents experimental frameworks - Kopf,

Metacontroller (Meta and GO_Meta), Operator SDK, and a control variable (Kubernetes

Pod creator labelled k8s). The Y-axis represents the runtimes in milliseconds. Each violin

plot is bifurcated to display runtimes with and without Pod creation, with accompanying

box plots indicating quartile ends and medians.

We evaluate the metrics’ mean (the average runtime), median and interquartile range

(IQR) for a more constructive analysis.

We discuss the results obtained by running the experiment locally and on the cluster.

Local environment

The comparison results are depicted in Figure 3.3. The Figure shows that all frameworks

outperform the Kubernetes built-in runtime for Pod creation. This observation suggests

that frameworks likely employ more efficient resource allocation and management strategies

or implement better concurrency and parallelism mechanisms tailored to specific tasks,

thus exceeding the more general-purpose Kubernetes mechanisms. Among the frameworks,
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Figure 3.3: Local runtimes of frameworks ordered based on median values.

Descriptive statistics of different frameworks with and without Pod creation running locally

Table 3.3: With Pod creation

Framework Median Mean IQR

Kopf 265.82 292.87 43.79
Meta 258.44 286.06 36.59
GO_Meta 274.50 287.13 52.71
SDK 274.50 284.18 148.50
k8s 456.43 494.05 81.44

Table 3.4: Without Pod creation

Framework Median Mean IQR

Kopf 275.04 307.52 51.49
Meta 256.34 267.31 33.28
GO_Meta 236.85 240.48 26.87
SDK 112.00 111.73 14.50
k8s - - -

Metacontroller with Python has the fastest runtime, followed by Kopf. While SDK and

Metacontroller with Go perform slower, they exhibit fewer outliers than Meta and Kopf.

The analysis further delves into quantitative metrics such as mean, median, and in-

terquartile range (IQR), summarized in Tables 3.7 and 3.4. Table 3.4 does not include

Kubernetes (k8s) values because we used a built-in Kubernetes command to create the

Pod, which cannot be modified to output a print statement.

Metrics Evaluation

Based on the results, the SDK framework demonstrates the best overall performance with

a mean runtime of 284.18 ms, followed closely by Meta (286.06 ms) and GO_Meta (287.13
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Table 3.5: Overhead of the frameworks

Framework With Pod Without Pod Overhead

Kopf 292.87 307.52 -14.65
Meta 286.06 267.31 18.75
GO_Meta 287.13 240.48 46.65
SDK 284.18 111.73 172.45

ms). Kopf exhibits slightly slower performance with a mean runtime of 292.87 ms, but

the difference is minimal. However, it’s important to note that the mean is sensitive to

outliers, and all frameworks exhibit some extreme values, as depicted in Figure 3.3.

Contrary to the mean, the median offers a more robust representation of the typical

runtime, particularly in cases where data is skewed or contains outliers. In this context,

Meta outperforms all other frameworks with a median runtime of 258.44 ms. Kopf follows

with a median runtime of 265.82 ms, while both GO_Meta and SDK have a median

runtime of 274.50 ms. Notably, the median value of the Kubernetes built-in Pod creator

(k8s) is significantly slower compared to the other frameworks.

Similarly to the median, the IQR provides a measure of variability that is robust to out-

liers, focusing on the central portion of the data. A smaller IQR indicates more consistent

runtimes. Meta demonstrates the smallest IQR at 36.59 ms, indicating highly consistent

runtimes. Kopf follows closely with an IQR of 43.79 ms, while GO_Meta exhibits an IQR

of 52.71 ms. Surprisingly, the IQR of SDK is almost four times larger than that of Meta,

with an IQR of 148.50 ms, surpassing the Kubernetes built-in Pod creator (k8s) with an

IQR of 81.44 ms.

The overhead of the frameworks is presented in Table 3.5.

In the evaluation of framework overhead, Kopf displays a negative overhead of -14.65

ms, indicating that it takes less time to create a Pod than to execute a print statement.

This characteristic is common in Python due to its interpreted nature. Metacontroller

demonstrates a modest overhead of 18.75 ms, while GO_Meta’s overhead is slightly higher

at 46.65 ms. Conversely, the SDK framework demonstrates the most significant overhead

among the evaluated frameworks, with a value of 172.45 ms.

Cluster Environment

Running the experiment within the cluster produced slightly different results, presented in

Figure 3.4.
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Figure 3.4: Cluster runtimes of frameworks ordered based on median values.

Descriptive statistics of different frameworks with and without Pod creation running on cluster

Table 3.7: With Pod creation

Framework Median Mean IQR

GO_Meta 76.5 77.68 9.25
Kopf 85.0 83.48 9.25
Meta 84.0 83.79 6.50
SDK 162.0 163.00 17.25
k8s 169.0 168.98 22.25

Table 3.8: Without Pod creation

Framework Median Mean IQR

GO_Meta 83.0 83.81 6.25
Kopf 86.0 85.85 7.00
Meta 83.0 82.69 9.25
SDK 112.0 111.73 14.50
k8s - - -

According to the violin plots, the Metacontroller and Kopf frameworks perform signifi-

cantly better than the Operator SDK and Kubernetes’ built-in Pod creator. Surprisingly,

Metacontroller with Go runtime is dramatically faster on the cluster than on the local

machine. The scope of the runtime values is smaller on the cluster, and the frameworks

have few outliers. The distribution of the runtimes is more normal.

Metrics Evaluation

The metrics information is summarized in Table 3.8.

Based on the results, GO_Meta stands out as the most efficient framework with the

lowest mean runtime of 77.68 ms, closely followed by Kopf with a mean runtime of 83.48
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Table 3.9: Overhead of the frameworks

Framework With Pod Without Pod Overhead

GO_Meta 77.68 83.81 -6.13
Kopf 83.48 85.85 -2.37
Meta 83.79 82.69 1.1
SDK 163.00 111.73 51.27

ms and Meta at 83.79 ms. In contrast, SDK and k8s show significantly slower performance,

with SDK’s mean runtime being 163.00 ms and k8s - 168.98 ms.

While the mean runtime offers a general performance overview, it is sensitive to ex-

treme values and may not always accurately reflect typical performance. Even though

cluster results have very few outliers compared to local results, they might still affect the

performance and are important for analysis. However, based on average runtime values,

GO_Meta is the fastest, followed by Kopf and Meta, with Kopf being 0.31 ms faster than

Meta. Operator SDK and k8s have slower average runtime values.

The median runtime offers a more robust representation of typical performance as it

minimizes the impact of outliers. Here, GO_Meta again has the lowest median runtime

of 76.5 ms. Meta and Kopf follow with 84 ms and 85 ms, respectively. SDK and k8s show

significantly higher median runtimes, with SDK at 162.0 ms and k8s at 169.0 ms.

The interquartile range (IQR) provides insights into consistency. GO_Meta demon-

strates the smallest IQR of 9.25 ms with Pod creation, indicating highly consistent perfor-

mance with minimal variability. Kopf and Meta follow with IQR values of 9.25 ms and 6.50

ms, respectively, with Pod creation showing slightly higher variability than GO_Meta. In-

terestingly, SDK exhibits the largest IQR of 17.25 ms with Pod creation, suggesting higher

variability in its performance. Similarly, the IQR for k8s is quite large at 22.25 ms, reflect-

ing more significant variability and less consistent performance.

The overhead is presented in Table 3.9.

Table 3.9 shows that GO_Meta and Kopf have negative overheads. For GO_Meta,

this might be due to efficient resource management and the benefits of the Go language’s

concurrency model. The negative overhead for Kopf, which also appears in the local

experiment, is likely due to Python being the interpreted language. Metacontroller has a

very low overhead of 1.1 ms, but Operator SDK shows the most significant overhead among

the frameworks, with a value of 51.27 ms. This substantial overhead indicates that creating
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a Pod introduces additional expenses, possibly due to less efficient resource allocation or

higher overheads associated with its containerization process.

Implemetation Simplicity

In assessing the ease of implementation for each framework, particularly from a beginner’s

perspective, Kopf appears to be notably user-friendly. Its comprehensive documentation

and straightforward setup process promote a smooth experience, with installation taking

less than an hour and simple Operator creation being complete in under three hours. Clear

instructions and detailed online resources with numerous examples significantly ease the

learning curve.

In contrast, the Operator SDK framework presents several challenges, with less acces-

sible documentation and a setup process requiring a deeper understanding of unfamiliar

concepts. Implementation with WSL (Operator SDK is not supported on Windows) adds

complexity, leading to longer implementation times and multiple troubleshooting sessions,

potentially challenging for users with limited experience.

Metacontroller framework is in a balance between the two, offering moderately clear doc-

umentation and a manageable setup process. Although the initial setup of Metacontroller

can be complex, the availability of tutorials provides a smoother implementation compared

to the Operator SDK framework.

3.6 Analysis of Results from the Framework Comparison Ex-
periment

The experiment evaluated the performances and usability of several Kubernetes frame-

works, including Metacontroller (Python and Go implementations), Kopf, and the Opera-

tor SDK. The experiment was executed on a local machine and in the cluster environment.

Since the cluster environment has more computational power and resources than the lo-

cal machine, the results obtained from the cluster are generally more indicative of each

framework’s performance capabilities. Thus, the conclusions are drawn based on cluster

results.

The analysis reveals that Metacontroller, implemented in Go, is the fastest framework

overall. This efficiency can be attributed to Go’s optimized concurrency model and effective

resource management, as demonstrated by its negative overhead. Following GO_Meta,

Kopf and Metacontroller with Python show comparable runtime speed, with Kopf having
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a slightly lower mean runtime than Meta. Despite this, both frameworks demonstrate

strong performance and consistency.

In contrast, Operator SDK demonstrates a significantly slower runtime. SDK’s substan-

tial overhead highlights additional costs associated with Pod creation and reveals a more

considerable variability than the ones of other frameworks.

From a usability perspective, Kopf appears to be the most user-friendly framework, with

a straightforward setup process and extensive documentation. Metacontroller balances ease

of use and technical depth, providing a manageable learning curve and helpful resources,

but the setup and implementation with Go is more complex than with Python. In contrast,

Operator SDK presents the most significant challenges for newcomers, with more complex

documentation and a more challenging setup process, especially for users with limited

experience.

Overall, GO_Meta is recommended when the best performance and efficiency are re-

quired, while Kopf is ideal for users seeking ease of implementation and good performance.

3.7 Summary

In this chapter, we answer RQ1 by experimentally comparing three frameworks used to

create Operators in Kubernetes. The Metacontroller implemented with Go and Kopf ap-

pears to be the most suitable and efficient framework. While the Metacontroller provides

faster runtime, implementing with Kopf is more straightforward, requires less time, and is

slightly less efficient than Metacontroller with Go. Thus, we use the Kopf framework in

this project to develop a Task-aware scheduler.

At the end of this chapter, we evaluate the Kopf framework according to the design re-

quirements set before. Table 3.10 summarizes the requirements and provides their statuses:

yes (requirement is passed), partially (requirement is passed partially) and no (requirement

is not passed). As seen in Table 3.10, the chosen framework satisfies almost all of the re-

quirements except for R2. While Kopf has high runtime performance, there are other

frameworks like Metacontroller with Go that have more efficient runtimes. Hence, R2 is

satisfied partially.
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Table 3.10: Evaluation of requirements for Operator creation framework

ID Requirement Satisfied

R1 The Operator must be efficient and handle a significant volume
of tasks

Yes

R2 The programming language used for the Operator should have
high runtime performance

Partially

R3 The framework should be straightforward, allowing developers
to create Operators with minimal effort

Yes

R4 The chosen framework should provide a balance between run-
time speed and implementation simplicity

Yes
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Task-Aware Scheduler Design

In this chapter, we answer RQ2 - How to design Task-aware scheduler compatible with

Kubernetes Apache Spark stack? by designing an external Task-aware scheduler that runs

inside the Kubernetes cluster.

4.1 Overview

With the rapid growth of data, big data processing has become essential across various

fields, including healthcare, banking, scientific research, and large and small businesses.

These sectors rely heavily on advanced data processing frameworks, with Apache Spark

being one of the most prominent tools available [56].

Apache Spark [6] is an open-source framework for processing large datasets with a

straightforward API [57]. It supports multiple programming languages, including Scala

and Python, and is widely used for data engineering, data science and machine learning.

Apache Spark has an extensive ecosystem with integrations into various machine learning,

analytics, and storage frameworks [6]. Users can also customize Apache Spark to meet

specific requirements by modifying the Spark source code, available on GitHub, along with

installation and building guides [58].

4.2 Problem With Local Frameworks Schedulers

Apache Spark and similar Big Data frameworks operate on significant data volumes. To

understand how Spark manages these data-processing tasks, it is helpful to look at the

process through which a Spark application is decomposed into manageable components. A

schematic workflow is illustrated in Figure 4.1. In this workflow, the Spark application 1
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Figure 4.1: Decomposition of Spark application to executable tasks [59].

represents the computational program that performs various operations across a cluster in

parallel [61].

When an application is submitted, a central coordinator called Spark Driver is created.

The Spark Driver is responsible for breaking down the application into smaller components

called Jobs. These Jobs are further divided into stages, which are then split into tasks, as

shown in Figure 4.1. These tasks can be executed independently across worker nodes on

local resources or through external systems like Kubernetes that make application manage-

ment more accessible [9]. In a Kubernetes environment, the smallest unit of deployment

and management is called a Pod [62]. When Spark runs with Kubernetes support, the

Spark Driver runs as a Pod within the Kubernetes Cluster [60], as shown in Figure 4.2.

The problem is that Kubernetes is only aware of and can manage the Pods at a high

level without direct visibility into the internal processes of the Spark Driver, making the

scheduling process less efficient than it might have been.

One potential solution to improve scheduling efficiency in Spark applications running on

Kubernetes is to create an external scheduler within the Kubernetes cluster. This external

scheduler receives application data from Spark Driver, applies a scheduling algorithm, and

executes operations on the worker nodes. This way, Kubernetes can adjust its scheduling

strategies based on the tasks instead of Pods, leading to more efficient scheduling.

Additionally, having an external scheduler centralizes the scheduling logic into a single

program, making assessing, modifying, and enhancing the scheduling algorithms easier.

Instead of working with the complex and distributed Spark’s built-in scheduling mecha-

nisms, developers can experiment with more sophisticated scheduling algorithms (moving

beyond the default First-In-First-Out (FIFO) scheduling) outside the Spark source code.
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spark-submitClient

Kubernetes Cluster

apiserver

scheduler

Spark Driver

Executor 1 Executor 2 Executor 3

Figure 4.2: The mechanism of submitting a Spark application to Kubernetes cluster using
spark-submit command [60].

4.3 Design Requirements for Task-Aware Scheduler

In this section, we define the requirements for an external Task-aware scheduler. These

requirements are presented in Table 4.1 and are evaluated at the end of the next chapter

because these requirements apply to both RQ2 and RQ3.

The scheduler must be functional (R1, R2, R3), work with many tasks (R5), and

work well with the existing ecosystem of Spark and Kubernetes (R4, R6). It should

implement more efficient scheduling algorithms (R7) and provide monitoring tools (R8).

The scheduler should also be compatible with multiple Spark versions (R9).

4.4 Design Of Task-Aware Scheduler

The primary purpose of this study is to develop an external Task-aware scheduler within the

Kubernetes cluster to enhance the management of Apache Spark, Dask, and other similar

application frameworks. This external scheduler functions as a united scheduling solution,

allowing the integration of advanced and innovative scheduling techniques, such as energy-

aware scheduling, without requiring a complete redesign for each individual framework.

Figure 4.3 provides a high-level overview of the design of this external scheduler. When

an application is submitted using the spark-submit command, the Spark Driver is created

and initializes communication with the Kubernetes Operator through the Kubernetes API.
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Table 4.1: Requirements for an external Task-Aware Scheduler

ID Requirement

R1 The scheduler must store information about executors
R2 The scheduler must decide which executor to use and notify Spark Driver about

the decision
R3 The scheduler must be notified when the task assigned to an executor is completed
R4 The scheduler must be comparable to at least with the built-in Spark scheduler
R5 The scheduler must efficiently manage a high volume of Spark tasks
R6 The scheduler should integrate with Spark and Kubernetes
R7 The scheduler must support the implementation of advanced scheduling algo-

rithms beyond default FIFO
R8 The scheduler should offer monitoring and logging capabilities for task execution
R9 The scheduler should be compatible with multiple Spark versions and configura-

tions

The Operator processes the data received from the Spark Driver and executes it on the

worker nodes. As the tasks are completed, the executor nodes notify the Spark Driver of

their progress and status.

Research Methodology

This project adopts the design and development methodology, which refers to develop-

ing a novel system or function for a specific situation. In particular, this project utilizes

the Bottom-Up approach, which starts with a foundation and builds up towards a so-

lution [63]. All the modifications are produced incrementally, from the most minor and

simplest modifications to more complex and structured ones.

This project follows applied research principles. Applied research is a non-systematic

way (meaning that its primary goal is to find a solution immediately) to solve a specific

research problem. Out of three types of applied research, this project uses research and

development, which focuses on creating or designing new products or services that address

the specific needs of particular markets in society [64].
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Figure 4.3: The overview of the Task-aware external scheduler.

Current Spark Scheduler Workflow

Scheduling in Apache Spark happens in various stages and locations. An overview of the

scheduling is shown in Figure 4.4, and a more detailed execution workflow is presented in

Figure 4.5.

After submitting the Spark application as a user program 1 , the resilient distributed

datasets (RDDs) 2 are created for every application action. RDD represent work that

can proceed independently on one executor node. Spark action is an RDD operation that

triggers the RDD transformation and returns the results. Each action triggers a new Job

creation. Each Job has a separate Direct Acyclic Graph (DAG) 3 with relevant RDD

objects (named Stages) as graph nodes. The Direct Acyclic Graph (DAG) is subsequently

used as an input for the DAG Scheduler 4 . DAG Scheduler comes up with an execution

plan to run all the Stages listed in the DAG with minimal time. DAG Scheduler divides

the DAG into sets of tasks (named TaskSets) that can be executed in parallel.

The TaskSets 5 created by the DAG Scheduler are submitted to a low-level TaskSched-

uler 6 . TaskScheduler schedules and launches the tasks via cluster managers. First,

TaskSetManager is created to manage the TaskSet, sorting the tasks by priority, using

their Job ID, and then by Stage ID. Then, the TaskSetManager is added to the pool. The

pool has a tree-like structure, which depends on the Scheduling Mode. Scheduling Mode in

Spark only supports the default First-In-First-Out (FIFO) and FAIR (scheduling method

where all jobs get an equal share of resources over time [65]). If the Scheduling Mode is

FIFO, there is only a single root pool. In the case of FAIR, there can be multiple pools,
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Figure 4.5: The execution workflow of Spark scheduling [19].

which can also be nested [66].

A backend scheduler (a subclass of SchedulerBackend trait, which provides a unified

interface for cluster environments to interact with TaskSchduler) sends the information of

available resources in each executor it manages to the TaskScheduler. If the TaskScheduler

returns a positive decision, the SchedulerBackend assigns the tasks 7 from the pool to

the executors [67].

Since the scheduling process happens on multiple layers, several options exist for im-

plementing it externally. The best case is to separate the entire scheduling process from

the top-level DAG Scheduler, as shown in Figure 4.8 A . This case is the most beneficial

as it allows the implementation of a different scheduling algorithm for the entire process.

However, this approach is also the most complex as it requires implementing the scheduling

structure from scratch, including all the bottom layers and backup procedures.

Another approach is to implement the task set scheduling process, represented in B .

The DAG can be sent to the custom Operator, which handles the TaskSetManager and Pool

creation and implements the task-scheduling algorithm. Such a method still allows some
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Figure 4.6: Operator workflow for executing the tasks.

freedom in choosing the scheduling algorithm; however, it is bounded by some limitations

as it has to follow the already created DAG.

The most straightforward implementation is manipulating tasks from the TaskSet as de-

picted in C . The tasks are sent to the executors in the order they arrive from Spark Driver,

following the FIFO principle of the original Spark Scheduler. This approach does not in-

troduce any novel scheduling algorithm, but it proves that extracting the task-scheduling

process outside of the Spark Driver is possible.

Due to time constraints, the latter approach was implemented in this project.

4.5 Implementation Of Task-Aware Scheduler

This project describes a Task-aware scheduler that aims to solve the problem of the Ku-

bernetes scheduler being unaware of the tasks derived in Spark Driver. We approach this

by creating an external scheduler that handles communication between Spark Driver and

executors, sending the task data to the chosen executor nodes. This external scheduler can

be implemented as an Operator in Kubernetes using the Kopf framework.

When Spark Driver decides which executor to submit the task to, a custom Operator can

make this decision instead. Communication between Spark Driver and Operator can be

done using the Kubernetes client Fabric8 [68] by creating a new Custom Resource Object

(CRD should be defined and applied to Kubernetes beforehand). Figure 4.6 describes the

workflow process as a flow chart. Communication between Spark Driver and Operator

happens in several cases:
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Figure 4.7: Comparison of original and custom Spark runtimes.

• New executor is created A1 - information about the new executor, including execu-

tor ID, hostname and the number of tasks running on an executor, is specified as a

spec field of spark-executors CR A2 . Information about each executor is stored on

an Operator A3 .

• Spark Driver asks which executor to choose for the task B1 - Spark Driver creates a

spark-request CR with an empty field for an executor ID. The operator B2 checks

if there are any executors created B3 and decides which executor has the lowest

number of running tasks B4 . It then updates the empty field of the spark-request

CR with the corresponding executor ID B5 . Spark Driver reacts to this change by

using the chosen executor B6 .

• Task is assigned to an executor - when assigning a task to an executor, the cor-

responding spec field number of tasks running is updated. The Operator receives

this update and reflects the changes in the data structure that stores all information
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about the executors C3 .

• Task is completed - when the task has been completed on an executor, it notifies

Spark Driver C1 and Operator C2 about this. The operator updates the number

of tasks running of that particular executor C3 .

One of the requirements for a Task-aware scheduler is to develop an efficient solution,

meaning that the custom Spark runtime working with a new scheduler should have perfor-

mance comparable to the original Spark runtime. To assess this, we test the performance

of the modified Spark (with our novel component) by running the SparkPi example and

measuring its execution time. The results, shown in Figure 4.7, indicate that the system

with the new scheduler performs approximately three times slower than the original one.

While this is a noticeable difference, it is not excessively or dramatically slower than the

original Spark runtime.

Based on these results, we can conclude that the design of the external Task-aware

Scheduler is comparable to the original Spark scheduler in terms of performance. However,

it is essential to note that this evaluation is limited. The SparkPi example only consists of

two tasks, which is too simplistic to draw comprehensive conclusions about the scheduler’s

performance. Therefore, a more thorough evaluation of the system, which considers a

broader range of applications and scenarios, is presented in the next chapter.

Limitations

This research aims to show that it is possible to create an external scheduler that is aware

of the tasks generated by Spark Driver. Therefore, the implementation only focuses on

the limited functionality, ignoring all additional background stages implemented by the

original Spark scheduler. Thus, the proposed Task-aware scheduler is a restricted version

of the one Spark initially has and is expected to perform worse in runtime.

Additionally, the Spark used was the last stable model, and all the dependencies were

adjusted to that particular Spark version. Because this project does not utilize the latest

Kubernetes, Fabric8, and Spark versions, it might have some limitations that were updated

in the newest releases. For future releases of Spark, updating these dependencies would be

required.
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4.6 Summary

In this work, we designed and implemented an external Task-aware scheduler that com-

municates with the Spark Driver and executes tasks on the Kubernetes executors. The

scheduling algorithm here is FIFO, the same as the default Spark algorithm.

This section answered RQ2 by providing a working solution. Proving the possibility of

creating such an external scheduler is good groundwork for developing more complex Task-

aware schedulers. In our view, having an external scheduler is beneficial for the general

performance of Spark applications and is a solid foundation for future research.
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Experimental Evaluation

This section aims to analyze the performance of the runtime framework with an added

external scheduler and answer RQ3 - What is the impact on the performance of moving the

scheduler outside of the Spark framework in the Kubernetes cluster? by running experi-

ments in a test environment.

5.1 Experimental Setup

To evaluate the performance of the Task-aware scheduler, we run an application on a

cluster to determine whether the runtime of the custom system is comparable to that of

the original Apache Spark runtime. Computations were performed on an AL01 cluster

node six operated by atLarge group. For this evaluation, we used the Continuum [69]

deployment and benchmarking framework, along with the Sharebench framework. The

specifications of the virtual machines used for this evaluation are detailed in Table 5.1.

We used Continuum to generate and build an emulated system. Continuum is a bench-

marking framework for the edge-cloud compute continuum. Its main goal is to develop

a comprehensive framework and tools for managing and optimizing the performance of

large-scale distributed systems. Continuum emulates a compute continuum environment

by automating the creation of a cluster of cloud, edge, and endpoint virtual machines.

Framework automatically installs operating services, resource managers (including Kuber-

netes), and applications inside the emulated cluster [69].

In this evaluation, the Continuum runs virtual machines with five cloud nodes, one of

which is a controller node. Continuum also starts a Kubernetes cluster and verifies whether

all nodes in the cluster are connected.
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Table 5.1: Virtual machines specifications.

Provider Nodes Core Memory

qemu 5 4 32 GB

We generated 10 GB of data and ran tests using the Sharebench [70] framework. Sharebench

is a novel benchmarking framework introduced by Lennart Schulz. It is an infrastructure

framework for automated performance analysis of distributed resource-sharing mechanisms.

In this evaluation, the Sharebench framework generates data and metadata for SQL queries

and runs TPC-DS. TPC-DS is a Decision Support Benchmark model for queries, data main-

tenance, and other aspects of a decision support system. TPC-DS provides a representative

performance evaluation as a decision support system [71].

To evaluate the performance of an external Task-aware scheduler, we compared the run-

time of 20 TPC-DS queries running with the original Spark and our modified version.

Running custom Spark added additional challenges as it requires some source code modi-

fications of the Sharebench framework, which Appendix A addresses.

5.2 Findings

The evaluation results are depicted in Figure 5.1 as two logarithmic scale box plots demon-

strating the distribution of runtimes. The results have been visualized using a box plot

with a logarithmic scale for better understanding. The X-axis represents the Spark version

(original and custom), and the Y-axis shows the runtime in seconds. We compared two

Spark versions - the original Spark (left box plot) and the custom Spark (right box plot).

Box plots show that the modified Spark is significantly slower and less consistent than

the original Spark. The custom Spark’s median runtime is larger than the original Spark’s,

indicating a slower average performance. Additionally, the custom Spark has a wider

IQR, suggesting that the middle 50% of runtimes are less consistently grouped around the

median compared to the original Spark. The whiskers for the custom Spark are also longer,

indicating more significant variability in runtimes. While there is at least one outlier for

the original Spark, the overall spread of data points is more extensive for the custom Spark,

showing greater variability. In summary, the custom Spark demonstrates longer and less

reliable runtimes, whereas the original Spark shows a lower median runtime with decreased

performance variability.
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Figure 5.1: Runtimes of original and custom Spark.

Table 5.2: Metrics of original and custom Spark in seconds.

Spark version Mean Median IQR

Original Spark 12.85 9.19 15.15
Custom Spark 273.49 38.14 340.89

Statistical metrics like mean, median, and IQR values are summarized in Table 5.2,

which provides more quantitative analysis. The average runtime (mean) for the original

Spark is 12.85 s, while for the custom Spark, it is 273.49 s. These statistics show that, on

average, the custom Spark takes significantly longer to run. Custom Spark is 21.3 times

slower, on average, than the original. The median runtime for the original Spark is 9.19 s,

compared to 38.14 s for the custom Spark. A higher median in the custom Spark indicates

that the central value of the custom Spark runtimes is higher, meaning that more than

half of the tasks run faster with the original Spark than with the custom Spark. The IQR

for the original Spark is 15.15 s, while for the custom Spark, it is 340.89 s. The larger IQR

for the custom Spark indicates greater variability in runtimes, meaning the custom Spark

version’s performance is less predictable.

The box plots and the table show that the custom Spark appears to have a less consistent
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Figure 5.2: Task execution times of original and custom Spark.

and predictable performance than the original Spark. The custom Spark has a higher

average and median runtime, indicating that it performs worse than the original Spark in

terms of speed. Custom Spark’s wider distribution and higher IQR also suggest that its

performance can vary significantly depending on the specific task or conditions, whereas

the original Spark delivers more stable performance.

To evaluate whether the Task-aware scheduler increases the task execution runtime, we

collected the runtimes of individual tasks within the Spark application of both implementa-

tions. These runtimes are presented as violin plots in Figure 5.2. The X-axis represents the

implementation, and the Y-axis shows the runtime in seconds. From this Figure, we can

see that both implementations have similar performance in terms of task runtimes. Both

distributions have the same overall shape and close median runtime values, which suggests

a similar variability and central tendency for the task runtimes of both implementations.

The original Spark shows a slightly more spread-out distribution towards the lower end

of the runtime range, suggesting more variability in faster runtimes. The custom Spark

reveals a similar distribution spread but is slightly less variable in faster runtimes.

In general, custom Spark appears to be significantly less efficient and reliable. This
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result is expected because an external scheduler in custom Spark supports only basic

functionalities and introduces additional communication, negatively affecting the runtime.

For practical implications, the original Spark is more suitable at the moment. Regarding

task execution, both implementations are relatively consistent and comparable in their

task runtime performance.

5.3 Limitations

Although this analysis provides representative results for the experimental evaluation, sev-

eral limitations remain.

Data

The generated data has a sample size of 10 GB, which is sufficient for the current evaluation

scale. However, using a larger dataset of 1 TB or more could provide more robust and

comprehensive insights into the performance of the Spark versions.

Another important consideration is the randomness of the queries. In this evaluation,

we run 20 queries for the original Spark and another 20 for the custom Spark version.

These queries are not identical but are randomly generated each time, which means that

running the same experiment with a different set of random queries could yield different

results. For a more consistent comparison, identical queries should be used across different

runs. Additionally, the generated SQL queries vary in size, significantly impacting their

runtimes.

Environmet

The evaluation is conducted on a cluster with virtual machines, where the number of nodes

and memory for the Kubernetes cluster are predefined. Changing these specifications, such

as using different node counts, memory configurations, or even different types of virtual

machines, could lead to other performance results.

Moreover, replicating this experiment on a local machine or another cluster could yield

different outcomes due to hardware, network conditions, and system load variations. The

results obtained in our specific environment might not be fully generalized to other settings.

Evaluation metrics

The primary metric used for evaluation is the runtime of the two Spark versions. While

this is a crucial measure of efficiency, it does not address other important aspects such
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Table 5.3: Requirements for an external Task-Aware Scheduler

ID Requirement Satisfied

R1 The scheduler must store information about executors Yes
R2 The scheduler must decide which executor to use and notify

Spark Driver about the decision
Yes

R3 The scheduler must be notified when the task assigned to an
executor is completed

Yes

R4 The scheduler must be comparable to at least with the built-in
Spark scheduler

Yes

R5 The scheduler must efficiently manage a high volume of Spark
tasks

Partially

R6 The scheduler should integrate with Spark and Kubernetes Yes
R7 The scheduler must support the implementation of advanced

scheduling algorithms beyond default FIFO
No

R8 The scheduler should offer monitoring and logging capabilities
for task execution

Yes

R9 The scheduler should be compatible with multiple Spark ver-
sions and configurations

Partially

as resource utilization (CPU, memory), scalability, fault tolerance, and overall system

stability.

For instance, resource efficiency can be critical in determining the cost-effectiveness of

each Spark version, especially in large-scale deployments. To provide a more holistic perfor-

mance evaluation, metrics such as CPU usage, memory consumption, and disk I/O should

be considered. Additionally, evaluating how each Spark version scales with increasing data

sizes and workloads and how it handles failures and maintains stability under stress would

offer valuable insights.

5.4 Evaluation of Task-Aware Scheduler Requirements

In this section, we evaluate the requirements identified at the beginning of Chapter 4. The

statuses of the requirements include yes (for a passed requirement), no (for the requirements

that are not passed), and partially (for the partially passed requirements, respectively).

The requirements are shown in Table 5.3.
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Due to limited time availability, we implemented a basic version of the Task-aware sched-

uler without providing the functionality for dynamic task allocation and advanced schedul-

ing algorithms. Hence, R7 is not satisfied. Based on the evaluation results, our scheduler

handles a high volume of Spark tasks but is unable to manage them efficiently, thus satis-

fying the R5 only partially. Also, currently, our scheduler only works with Spark v3.5.1,

leading to only partial satisfaction of R10.

5.5 Summary

In this chapter, we answered RQ3 about the performance of modified Spark by conducting

an experimental evaluation of the modified version of Spark with an added Task-aware

scheduler.

The results show that Spark’s performance changed negatively after moving the sched-

uler outside of the framework. The original Spark version is more efficient and reliable.

The modified Spark version shows higher variability and slower average runtimes, is less

predictable, and needs further optimization.

To address the limitations of the evaluation process, future work should use larger

datasets with identical queries across runs, experiment with different environmental se-

tups, and include a broader set of evaluation metrics to provide a more comprehensive

performance evaluation.
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Conclusion

This section summarizes the key aspects of the thesis by answering research questions,

discussing the limitations, and providing an intuition for future work.

6.1 Answering Research Questions

This thesis addresses the scheduling problem of the Apache Spark application within the

Kubernetes cluster. To enhance scheduling and resource management efficiency, we propose

creating an external Kubernetes scheduler that is aware of the tasks generated by Spark

Driver. We limited this problem to three research questions and were answering them

within this thesis project.

RQ1 - What is the comparative performance of the Operator Frame-
work, Kopf, and Metacontroller in terms of the time taken to create a
Pod in the Kubernetes environment?

To answer this RQ, we selected three frameworks for Operator creation, designed and

implemented an example workflow and executed it with each framework locally and on the

cluster.

The results indicate that the most efficient framework in terms of runtime is the Meta-

controller implemented with Go. However, Kopf and the Metacontroller framework im-

plemented with Python show very close results to Metacontroller with Go and also have

efficient runtimes. Regarding the ease of implementation, Kopf is the dominant represen-

tative.

Based on the results and analysis, we used the Kopf framework to create an external

Task-aware scheduler. Thus, RQ1 is answered by providing and analysing the results and
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choosing the framework for RQ2.

RQ2 - How to design a Task-aware scheduler compatible with Kubernetes
Apache Spark stack?

To answer this RQ, we used design processes typical for the field, created a novel design

solution, and implemented a prototype. We modified the Spark source code and created a

scheduler as a Kubernetes Operator. To establish whether the novel Task-aware scheduler

is comparable to Spark’s existing scheduler, we tested the original and modified Spark

versions on a basic example (SparkPi). We then compared the runtimes and confirmed

that our scheduler is indeed comparable.

This RQ is answered by providing a working design (presented in charts) and prototype

implementation (tested with an example SparkPi application) of an external Task-aware

scheduler. The answer to this RQ allows further experimental evaluation of the system

(RQ3) with this new scheduler.

RQ3 - What is the impact on the performance of moving the scheduler
outside of the Spark framework in the Kubernetes cluster?

To answer this RQ, we used external benchmarking tools to evaluate Spark runtime with a

novel scheduler on extensive data executing TPC-DS queries. We compared and analyzed

the runtimes of the original Spark and the modified version and concluded that moving

the scheduler outside of the Spark framework in the Kubernetes cluster negatively impacts

performance. The performance of the Apache Spark framework decreased significantly.

This RQ is answered by providing the results and their analysis of the experimental

evaluation of the modified Spark version with the implemented prototype of the Task-

aware scheduler.

6.2 Limitations and Threats to Validity

This section addresses some limitations and threats to the validity of this project.

Limitations

Important limitations of the work include scalability, generality, resource overheads and

deployment complexity.
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Scalability: We conducted this study on a limited scale, using specific cluster config-

urations and workloads. The scalability of the proposed solution on larger clusters and

different workloads remains untested.

Generality: We tested the scheduler prototype with the SparkPi and TPC-DS queries,

which may not cover the full range of use cases and real-world scenarios. Different types

of workloads might demonstrate different performance characteristics.

Resource overheads: Implementing the external scheduler introduces additional net-

work overheads, which are not considered in this study.

Development complexity: We did not evaluate the proposed scheduler’s implementa-

tion complexity and maintenance overheads. The ease of use and integration into existing

workflows may lead to potential challenges.

Threats to Validity

Threats to validity are described in terms of internal, external, and construct validity. We

also assign potential reproducibility issues to the threat to validity.

Internal Validity: We optimized the configurations and setups for experiments to the

best of our ability, but unaccounted variables might still affect the results.

External Validity: The findings from this study are based on a specific Kubernetes

and Spark setup. Different versions or configurations might yield different results.

Construct Validity: The benchmarks and metrics used to evaluate performance might

not capture all system efficiency and effectiveness aspects. Alternative metrics might pro-

vide additional insights.

Reproducibility: The experimental setup and environment specifics might pose chal-

lenges for the exact replication of the study. We tried to document the setup thoroughly,

but minor differences can still lead to variations in results.

6.3 Directions for Future Work

The findings of this thesis can be extended to future works in several ways.

One direction for future work involves improvements in design and implementation.

In this project, we implemented a scheduler that follows a limited FIFO approach in

scheduling individual tasks on executors. This scheduler can be further modified to work

on task Sets or even the whole DAG, applying more complex scheduling strategies and

algorithms.
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Another direction for future investment is improving the experimental evaluation. A

more comprehensive range of benchmarks, real-world workloads, and larger clusters with

varying configurations can be explored to evaluate the scheduler’s performance better and

provide additional insights into its limitations.

Incorporating this scheduler into other application frameworks like Dask or Knative is

also essential. While doing so might involve additional challenges and design and core logic

modifications based on specific frameworks, the general workflow should still apply to all

runtime application frameworks.

Addressing these areas allows future research to build on this thesis’s foundation and

further advance the field of Kubernetes-based scheduling for Apache Spark and other ap-

plications.
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Appendix A

Reproducibility

A.1 Abstract

Appendix A provides an artifact checklist, a description of hardware and software specifi-

cations, installation processes, and experiment workflow, and specifies the expected results

when the experiment runs successfully.

A.2 Artifact Checklist (Meta-Information)

• Algorithm: FIFO

• Program: Apache Spark, Kubernetes

• Run-time environment: Local machine, cluster

• Hardware local: Intel Core i7-8550U, RAM 16 GB

• Hardware cluster: Intel Xeon Silver 4210 CPU @ 2.20GHz, RAM 32 GB

• Metrics: Runtime, mean, median, IQR

• How much disk space required (approximately)?: 30g

• How much time is needed to prepare workflow (approximately)?: 15 minutes

• How much time is needed to complete experiments (approximately)?: 30 minutes

• Publicly available?: Yes

• Code licenses (if publicly available)?: Apache License 2.0

A.3 Description

This section describes how to access the code for the experiments and hardware and soft-

ware specifications for the local environment and cluster.
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How to Access

The modified Spark and Scheduler code for the experiments is available at GitHub repos-

itory.
Installation guides for the frameworks and link to Apache Source code:

• Minikube installation guide

• Kopf installation guide

• Metacontroller installation guide

• Operator SDK installation guide

• Apache Spark v3.5 source code

Local Environmental Setup

The local environment setup, including hardware and software specifications, is shown in

Table A.1.

Table A.1: Local system specifications

Component Specification

Processor Intel Core i7-8550U
CPU Base clock speed: 1.80GHz

Maximum turbo frequency: 2.00 GHz
RAM 16 GB
System Type 64-bit operating system, x64-based processor
Operating System Windows 10 Home
Virtual Machine Oracle VM VirtualBox 7.0.14
Kubernetes Minikube 1.32.0
WSL Ubuntu on Windows 20.04.4
Minikube VM Resources 4 CPUs, Memory: 8192 MB, Disk: 30720 MB
Apache Spark v3.5.1

Cluster Setup

The cluster setup with its hardware and software specification is presented in Table A.2.
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A.4 Installation

Table A.2: Cluster specifications

Component Specification

Processor Intel(R) Xeon(R) Silver 4210
CPU Base clock speed: 2.20GHz
RAM 32 GB
Arhitecture x86_64
Operating System Linux
Virtual Machine QEMU 6.1.0
Kubernetes Minikube v1.27.0
WSL Ubuntu on Windows 20.04.4
Apache Spark v3.5.1

Modifications to Sharebench Framework

To run Sharebench [70] with a custom Spark version, several things have to be changed in

the Sharebench source code. The code and commands are described in GitHub repository.

The procedure for running the Sharebench experiment with custom Spark is the following:

1. Create custom Spark image based on apache/spark:3.5.1-scala2.12-java17-ubuntu im-

age

2. Modify Dockerfile in the docker folder to build an image based on a custom Spark

image

3. Apply the RBAC, cluster role binding configurations and CRDs

4. Run the benchmark

A.4 Installation

This section describes the installation of the Operator Frameworks and their prerequisites.

Installation links were provided earlier in Appendix A.

Operator Frameworks Installation

Detailed installation guide of Kubernetes Development Environment - Minikube for various

operating systems is available at the Kubernetes official website [72].
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Installation guides of Kopf, Metacontroller and Operator SDK (does not support all

Windows versions, but can be installed on a WSL from GitHub release) are available

in the official documentation for Kopf [73], Metacontroller [74], and Operator SDK [75].

Prerequisites for each of the frameworks are listed below:

Table A.3: Frameworks prerequisites

Component Specification

Kopf pip installed, Python >= 3.8
Metacontroller Kubernetes >= 1.17, kubectl available and configured
Operator SDK curl installed, gpg >= 2.0

Go on WSL can be installed via the Go version manager (GVM v1.0.22). To install go1.20

- the latest version configured with Ubuntu on Windows v20.04.4, the go1.4 binaries must

be installed, and then the version should be updated to a more recent one. The following

steps were executed:

gvm install go1.4 -B

gvm use go1.4

export GOROOT\_BOOTSTRAP=$GOROOT

gvm install go1.20 -B

gvm use go1.20 --default

A.5 Experiment Workflow for Operator Frameworks Com-
parison

In this section, we describe the workflow of three frameworks - Kopf, Metacontroller and

Operator SDK.

Kopf Workflow

The core logic is written in the file named kopf.py. Running it with kopf run filename.py

–verbose allows monitoring a detailed description of the processes happening within the

file.

kopf run kopf.py --verbose # run code

kubectl apply -f crd.yaml # create CRD

kubectl apply -f obj.yaml # create CR object

kubectl get pods # check the pods

66



A.5 Experiment Workflow for Operator Frameworks Comparison

kubectl delete -f obj.yaml # clean up - delete CR object

kubectl delete pods --all # clean up - delete all pods

To measure overhead, the Python code is changed to only print CREATE POD IS RUN-

NING instead of creating a new Pod. The procedure is repeated with the modified code.

Metacontroller Workflow

The procedure for Metacontroller is almost identical to Kopf, except that it also requires

the creation of a controller. Since this framework is implemented with both Python and

Go, the commands to run the code vary depending on the language. The core logic

files are called sync.py and sync.go. When running sync.go, the path to the Kubernetes

configuration file must be specified to avoid errors. Additionally, the command: ["python",

"sync.py"] should be replaced with the command: ["./sync"] in the controller.yaml file.

To run sync.go:

go run "your-path\sync.go" -kubeconfig="$env:USERPROFILE\.kube\config"

The procedure:

python sync.py (or go) # run code

kubectl apply -f crd.yaml # create CRD

kubectl apply -f controller.yaml # create a controller

kubectl apply -f obj.yaml # create CR object

kubectl get pods # check the pods

kubectl delete -f obj.yaml # clean up - delete CR object

kubectl delete pods --all # clean up - delete all pods

Similarly to Kopf, to measure an overhead, both codes are changed to print CREATE

POD IS RUNNING instead of creating a new Pod. The procedure is then repeated with

a modified code.

Operator SDK Workflow

Steps for creating and running an operator:

• Create directory: mkdir pod_creator_operator

• Go to that dir: cd pod_creator_operator
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• Initialize new operator project: operator-sdk init –domain=your.domain –repo=github.com

/yourusername

/pod-creator-operator

• Create a new API for Pod resource: operator-sdk create api –group=example –

version=v1 –kind=Pod

• Modify file /pod_creator_operator/internal/controller/pod_controller.go

• Build and deploy an operator:

– make generate

– make manifests

– make install

– make docker-build docker-push (It might be needed to login to a docker account

with docker login, then run docker tag example.com/pod-creator-operator:0.0.1

username/pod-creator-operator:0.0.1and docker push username/pod-creator-operator:0.0.1)

– make deploy

• Create a new CR object file - sdk_pod.yaml

• Run kubectl apply -f sdk_pod.yaml

• To see the pods, run kubectl get pods

• To clean, run kubectl delete -f sdk_pod.yaml

Due to the complexity of modifying controller code, two operators with identical parameters

were created instead of a single operator whose core logic code is manipulated to output a

print statement rather than make a Pod. The only differences between the two Operators

are the names of files and core logic (Pod creation versus print statement).

Apache Spark Procedure

The steps to run a modified Spark version with the SparkPi example are listed below. Note

that the version of Kubernetes is downgraded. All files and commands are provided in the

GitHub repository GitHub repository.

1. start Kubernetes cluster with v1.25.3
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2. set custom Spark to be SPARK_HOME variable and include it in the PATH

3. build docker image

4. load an image to Minikube (or other Kubernetes cluster)

5. create Spark service account

6. apply RBAC configurations

7. apply cluster role binding

8. apply CRD

9. run an application starting the command with $SPARK_HOME/bin/spark-submit

10. in another terminal run the Scheduler

11. check log statements once the application terminates

A.6 Evaluation and Expected Results

For the Operators frameworks: when the experiment runs, it outputs the iteration number,

like "Running iteration 54". If the experiment is terminated successfully, a CSV file is

created with entries for 100 runtimes.

For the Spark with Task-aware scheduler: when running successfully, the log statements

of the Spark source code output "Custom resources created for tasks", the Operator outputs

the "Reached operator" statement and prints the task data. When the application stops

running, it executes with exit code 0.
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Appendix B

Self Reflection

Before working on the thesis, I had no prior knowledge of Apache Spark and Kubernetes.

I had to learn many new concepts, such as containerization, docker, Kubernetes, Apache

Spark, and even a new programming language - Go. This section reviews the challenges

and things I have learned during this project.

At the beginning of my work, I was confused and overwhelmed by the amount of infor-

mation I read about Kubernetes and Spark. Everything was abstract and used complex

terminology I was not aware of. However, once I started implementing some of the con-

cepts on my own, they slowly became more apparent. When I reread some of the materials

that seemed very complex to me at the beginning, they suddenly became very logical and

straightforward. I liked how this confusion insensibly transferred to an understanding of

the topic.

When I started working with Spark source code, it took me additional time to explore

how to build and create a source code distribution as I had never worked with open-source

projects before and did not know the workflow. However, the most challenging part with

Spark was getting errors that were not answered online and were not very descriptive. I

had to consider which changes I made to my source code or environment and why this

could potentially raise an error. Sometimes, I did not change anything, but the behaviour

of the spark-submit command differed from the one I had on the previous day. I had to

divide and conquer the errors, and I believe this approach has improved my skills as a

Computer Science student.

I spent a couple of days solving one particular error. The error was due to incompatibility

between the versions of my Spark (v3.5.1), Kubernetes client (v6.7.2), and Kubernetes

itself, which was set up to the latest version but had to be downgraded to version 1.25.3.
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There was barely any information about this online. So, I had to dive deep into the

documentation of Spark and Kubernetes to find the solution.

I used several programming languages in this project: Python, Go, and Scala. While

familiar with Python and Scala, I had to learn Go from scratch. I also learned YAML

- a data serialization language that I later used outside the thesis project for a different

course.

An important aspect that constantly added new challenges to my work was my local

machine. My laptop operates on Windows, but many aspects of my work only work with

Linux (like Operator SDK). Installation processes are more complex on Windows and

require additional debugging. For example, Minikube installation on Windows gave me an

error like “This computer doesn’t have VT-X/AMD-v enabled. Enabling it in the BIOS is

mandatory". It was challenging to solve as my BIOS settings did not have the options for

“Advanced settings” or “Systems settings”, where virtualization can be enabled, and there

were no guides or manuals available for the BIOS of Xiaomi laptops. I solved this problem,

but fixing it took me several days.

Additionally, starting the Minikube VM takes a lot of time on Windows. When I began

working with Operator SDK, I switched to Ubuntu for Windows, which was way faster

and did not have installation problems. However, it had its own flaws, as I had to work

only with CLI, which was not always convenient.

Another problem with my local device was its computational power. It only has 16 GB

of RAM, which was 100% in use for most of the time when I worked with Spark source code

or ran Spark applications. As RAM was fully utilized but the memory was still needed,

my laptop used disk memory, which slowed down the performance dramatically. Creating

a distribution of the Spark version could take from 40 minutes to 2 hours.

One of the most important lessons I learned while working on this project was not

only how to solve errors and bugs but also how to find information about them when no

information is available. It made me think carefully about what exactly the program does

and what might cause the problem, understanding the implementation more deeply.

I learned how to work with Kubernetes, which I will surely use in the future. I also got

hands-on experience with a large open-source project that taught me how to work and

read projects with extensive structure and how to make such a large project consistent

with clear documentation, structure, and unified code readability.

For my future projects, it would be beneficial to document the working solution and the

steps that have been tried out, even if there are many of them. I have had situations where

the same error appeared, but the solution that worked previously did not work anymore,
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and I had to redo all the steps and find again all resources that have a potential solution.

Having documented all steps initially would speed up this process significantly.

The process of working on the thesis project was well-structured and organized. I had

sufficient communication and support from my supervisor and other atLarge team mem-

bers, and I always knew the next steps I needed to take. I am grateful for the opportunity

to work with this research team for the last four months.

In general, I enjoyed working on this project. It was interesting, challenging, but man-

ageable. I gained a lot of essential knowledge about widely known frameworks and tools,

structuring the work, dealing with a lot of information, debugging, and understanding big

projects. I am sure I will use this knowledge and skills further in my career.
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