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Abstract

It is popular for large software to follow a microservice architecture instead of
a monolithic architecture. Each module of the original monolith becomes a ded-
icated service in a new system and the service communicate with each other
over the network. This architecture change leads to a change in failure detec-
tion methods. In our work, we first discussed common failures that occur in
microservice applications. We present the challenges posed by the failures and
the microservice architecture to failure detection. Finally, we implement a fail-
ure detector which combines detectors for different failures into a single unified
framework. The failure detector implementation includes two parts: static file
parser and run-time failure detector. The parser detects common failure pat-
terns and instruments the application for runtime failure detection. The failure
detector is designed to handle the following failures at runtime: error swallow,
error unhandled, logic failure, data corruption, vulnerable operations, and infi-
nite loops. We evaluate the failure detector on a microservice research project,
and obtain over 90% accurate rate, 6% memory overhead, 35% CPU overhead,

and 5% request waiting overhead.
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Introduction

The faster time to market, high scalability and ease of deployment advantages (18)(19)
of the microservice architecture(20)) have made it increasingly popular. This microservice
architecture is here to stay in this digital society, providing services for users in different
industries, governments, and academia. The report "Microservices Adoption in 2020" (21))
from O’Reilly shows that more than three quarters (77 percent) of businesses have now
adopted microservices, which includes numerous network service providers that we are
familiar with, such as Netflix, Amazon, Uber, eBay and so on(22).

Because of the large number of people served by the applications that follow the mi-
croservice architecture, service failure will lead to time and economic losses to both service
providers and users. People now expect services based on the microservice architecture
to have high availability. In order to achieve this goal, an effective microservice platform
failure detector is very necessary.

The failure detector is a tool used to detect any failure and help the developer find out
the reason for failure of the computer system. It can be used to detect failed or partially
functioning hardware. It can also be used to detect software service failures due to human
error, logical problems, etc.

The failure detector developed in this article refers to the failure detector at the software
level of the microservice architecture. Due to the rapid development of distributed comput-
ing and microservices, in the production environment, the basic hardware architecture has
a dedicated team to build and maintain without programmers worrying about it. On the
other hand, microservice architecture refers to a new software development architecture.
Developers do not need to care about the underlying hardware, but instead focus more on
the writing of microservice code. So this article will not focus on failure detectors other

than software related failure detectors.



1. INTRODUCTION

In the microservice architecture, the services running independently in the container
combined with the communication network linking different services give it the advantages
of highly scalable and easy to deploy. However, because of this special structure, the
performance and system isolation brought by the container have brought huge challenges
to the failure detection in the microservice architecture. There are three obstacles to make
a good microservice failure detector: how to detect software failure in different services
and different containers, how to make different failure detectors in different containers
work together, and how to trace the source of failure.

First, although we can now see countless failure detectors, the vast majority of failure de-
tectors are developed for monolithic architectures, or large Internet companies have their
own internal tools. Second, most developers use software system log records or failure
messages displayed on the console to detect and analyze failure. Such a method may be
misled in the failure diagnosis process due to the lack of relevant system information and
the running status of related services, and finally waste a lot of time. Developers need
an effective detector system to help them detect failures on the microservice architecture
platform. This problem is particularly significant on microservice platforms, because dif-
ferent microservices are not interoperable from system information to runtime variable
data, which brings great challenges to failure detection. The third and the final point is
that in the actual deployment of microservices, different failures in the system may occur
at the same time, and the existing failure detectors published in each paper mostly point
to a certain type of failure. How to make different failure detectors or failure detection
algorithms work together is rarely studied.

In our paper, we target to design a failure detector, whose name is MFD (Microservice
Failure Detector), which is 1) Detect most programming related failures (hardware failures
are not included) 2) Can systematically detect, trace, localize failure for the user and get
related failure context 3) Easy to extend so that can easily update or add new mechanism
in future 4) Do not depend on language special component, for example, Virtual Machine
in Java, so that the detector can be implemented in all kinds of programming language
5) Can help the microservice software has high availability, which is one important QoS
metric in cloud computing(23)).

In this paper, we introduced and developed MFD (Microservice failure detector): It has
many effective failure detection methods that migrate from the monolithic architecture or
SOA architecture, and uses the easy-to-find software architecture to make different detec-
tion algorithms work together to find the software failures on the microservice architecture

and record the relevant failure context. Besides, it has the following characteristics: 1)



1.1 Problem Statement

Detect most programming related failures (hardware failures are not included) 2) Can sys-
tematically detect, trace, localize failure for the user and get related failure context 3) Easy
to extend so that can easily update or add new mechanism in future 4)) Do not depend on
language special component, for example, Virtual Machine in Java, so that the detector
can be implemented in all kinds of programming language 5) Can help the microservice
software has high availability, which is one important QoS metric in cloud computing(23).

In addition, we also introduced two failure simulation methods for the detector experi-

mental evaluation to get the overhead and performance of our failure detector.

1.1 Problem Statement

In this section, we point out four key issues found in the microservice platform failure
detector survey that can reveal new insights and requirements for failure detection tools
and technologies.

First of all, in the current research, there is no such paper to summarize failures, classify
failures, and analyze the failures reasons in the microservice architecture. For issues that
have such an important impact, it is surprising that not only is there no article discusses
potential failure from vulnerable components in the system aspect, but also there is no
microservice failure summarize from actual application. This makes the failure detector
users and new developers have no systematic understanding of what software failures live
in the microservice architecture, and can only study assume the failures type and trigger
location are familiar to monolithic architecture (3). This has led to developers cannot
develop the failure detector suitable for the microservice architecture.

Secondly, we need a framework that is easy to expand and can be used to cooperate
with various software failure detectors and software failure detection algorithms. In many
papers, there are many excellent failure detectors, such as (5) (I)(24)(25) to detect data
corruption in runtime, (2)) static code analyzer to detect infinite loop without running
the software, statistical correlation failure detector (6) (26) (7) 3) (8), (9), (10), (II)
(12) (I3) (I4) by parsing logs. However, no matter how good a detector is, it has its
own limitations. The users of the detector need to choose the right detector according to
their needs. Besides, there will be many potential failures in a system at the same time,
and we need different detectors to cooperate together. How to prevent the detectors from
influencing each other and effectively share information with each other to better cooperate

is needed for developers.
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Third, we need to comprehensively evaluate the failure detector with common microser-
vice software structure, service pressure, and all kinds of possible failure in the real world.
At present, we cannot find a scientific and effective method to test and evaluate microser-
vice failure detectors. The common method in the past was to add failures to the code
artificially. In this case, the developer of the failure detector knows where and when the
failure will occur. Else, find a well-known software system to test the version that knows
the specific failure. However, the result is not convincing enough, because these failures
types, locations, related context are known to the detector developer. The failures are not
inserted randomly, so the detector user does not know if a detector can achieve the same
result on other systems.

The fourth and final point is that an open-source failure detector that is easy to obtain
and contribute is very important for failure detector developers and users. An open-
source platform can not only reduce the developer’s use cost, but also continuously provide
suggestions for detectors or contribute better failure detection algorithms during use. At
the same time, it also helps the communication between practitioners to help each other

make wise decisions in the process of use.

1.2 Research Questions

In order to build an effective error detector for the microservice architecture and con-
duct a scientific and effective performance evaluation, we propose the following 4 research
questions (RQs):

RQ1:What is the state-of-the-art in failure detection techniques?

Before we build detectors for the microservice architecture, we need to know the-state-
of-art failure detection methods. We need to know the core algorithm and design idea of
these detectors and then migrate them to the microservice architecture. Moreover, there’s
no such paper to summarize and briefly introduce popular failure detectors in recent years.

RQ2: What properties of a microservice architecture make building a failure
detector difficult?

We first need to investigate what kinds of failures occur in applications that follow the
microservice architecture. It is difficult as existing studies are either too broad to use in our
paper, for example many papers even include hardware related and nature disaster related
failures, or some software failure discussed in the paper is not related to the microservice
architecture. At the same time, new components in the architecture bring novel failures

which we need to gather from many articles.



1.3 Approach

We need to know what features of the microservice architecture prevent developers from
locating and finding where the failure occurs. Answering this question is not easy, be-
cause different developers have different ideas. We need to find the answer from GitHub,
authoritative article, and forums where microservice architecture developers are active.

RQ3: How to design a failure detector that addresses concerns specific to the
microservice architecture?

The answer to this question is the core contribution of our paper. We target at to design
an easy extendable, coding language independent, system independent (easy to migrate)
failure detector framework for microservice architecture.

RQ4: How to evaluate our failure detector on microservice architectures?

Though there are many failure detector evaluation, however they are not based on the
microservice architecture or many of them only evaluate a single kind of failure. In mi-
croservice architecture’s failure detector evaluation it includes 5 core but difficult elements:
Design failure evaluation experiment, choose and write a testing microservice software, sim-

ulate failure, detect failures and analyze results.

1.3 Approach

RQ1:To answer this research question, we conducted a literature survey in the area of fail-
ure detectors which were published in recent ten years. This will help to know state-of-art
failure detectors’ algorithm, suitable apply condition, trade-offs during the implementa-
tion. Moreover, how and why did these detectors evolved is also important. We need to
put more focus on the failure detection algorithms that are widely applied in the industry
to know the different algorithms’ limitations, advantages and also users’ core requirements.

RQ2: To answer this research question, we did two important things. First, we con-
ducted a literature survey on failure classification paper from well-known publisher channel
to extract software failure information. This helps us to get a comprehensive view on the
way to know, classify and summarize the failure happens in real life. Secondly, we need to
know what new failure may happen on the microservice architecture and what challenge
we may face to design and implement the failure detector. We searched vulnerable compo-
nents in microservice, new failures happens in microservice, obstacle on microservice failure
detection from well-known tech website, GitHub and cloud computing related papers. This
is because though the microservice is widely used, it is rather new and no peer-reviewed
paper focused on the microservice’s failure. What we can do is to gather information from

the blog or the website has high influence on the microservice architecture or from the



1. INTRODUCTION

cloud computing failure-related paper that talked about the microservice architecture as
special condition.

RQ3: To solve this research question, first, we use the requirements we discussed in RQ2
as a design principle. Then, we combined plug-in architecture advantages and microser-
vice architecture’s communication interface to build the failure detector’s core framework.
Finally, we select the relevant failure detectors’ algorithms which we found in related work
as our implementation’s basic detectors. In this way, we build a prototype of a framework
to combine different sub-detectors for detecting and localizing failures on the microservice
platform.

RQ/4: To answer this question, we did an experimental evaluation on it. The evaluation’s
test software is from a famous research group. We have two types of failure injectors. One
is written by ourselves to inject logic error, the other one is ‘strace’ to inject interaction
error like I/O and network communication. We simulate the workload in real life to get

the overhead and performance of our failure detector.

1.4 Main contributions

In this thesis we provide the following Technical, Conceptual, and Experimental contribu-

tions, mapped to the research questions and chapters that it answers:

e (Conceptual, RQ1) Literature survey on the most popular and the state-of-art failures

detection methods in academia and industry filed. (Chapter

e (Conceptual, RQ2) System survey on the microservice architecture’s failures and

discussion on failure trigger reasons and failures findings. (Chapter

e (Conceptual, RQ2) Analysis of the challenge and critical issues on microservice failure

detector failure implementation. (Chapter [3))

e (Conceptual, RQ3) Design overview and requirement analysis of MFD, gives a sub-

detectors combing framework prototype to reader (Chapter [4))

e (Technical, RQ3) Design, implement, deployment the failure detector framework and

corresponding sub-failure-detectors. (Chapter

e (Technical, RQ4) Find and rewrite a microservice research software to prepare for
experimental evaluation. First, the software simulates the real architecture and com-
ponents in real industry deployment. Moreover, add the service container monitor

tools is also important. (Chapter
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e (Technical, RQ4) Implement a failure injector to inject failures in our evaluation

software during the detector’s evaluation.(Chapter |5

e (Experimental, RQ4) Design and deployment of experiments for MFD on the high-
performance computer.(Chapter

e (Experimental, RQ4) Quantitative the overhead, precision, false alarm of the eval-
uation result. Demonstration on the advantages of MFD. Analysis limitation and

corresponding reason. (Chapter [5)
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Related Failure Detectors

This section will review failure detection-related works that can inspire MFD development.
In this section, we will briefly outline the relevant failure detector technologies in the past
five years. We classified failure detectors, the result can be seen in Table and analyze
the existing error detection technologies that may apply to the MFD Detector.

Detector Type Target Failure Precision Remark
Watch dog Partial Failure 91% Need file parse time
Runtime Checksum/Duplicator Data Corruption 99% Need extra memory and may slow the functions
Static Code Analyser Infinite Loop 95% Hard on implementation

Statistical Correlation Detector | All Kinds of Failures 7%

Machine Learning Detector All Kinds of Failures | 88%-92% | don’t know effect after migration to other application

Table 2.1: Related failure & failure detectors. (Source: table constructed from published

results. (5) (2) (I) (6) (7)(S) (@) (10)(1T) (12)(L3) ([14).)

Viewing all kinds of detectors during the research is an impossible task, we set the criteria

to filter error detectors as follows:

1. The failure detectors that use mainstream detecting algorithm of recent years in
industry or academia. The detectors’ paper should include detector design principle,

detector design algorithm and detector experimental evaluation & analysis.

2. The detection granularity of the detector needs to be at least at the software’s func-
tion level. This means the detectors that detect failures of nodes in clusters, the

detector detects hardware failure, etc. will not be included in this section.

3. Tracing and localizing failure is a challenge in detector design. This section will also
introduce related detectors that have failure tracing techniques or failure locating

techniques through networks.



2. RELATED FAILURE DETECTORS

2.1 Watch dog - Runtime Partial Failure Detector

The implementation from Chang Lou et al.(5)) called OmegaGen uses watchdog, which is
a run-time selective detector. First, the watchdog searches the location of long-running
blocks (like while loop) and vulnerable code blocks (like I/O, Network). The watchdog
packs detected code blocks and run packed code parallel with the original code. It checks
the result at a checkpoint, if there’s a failure detected, it will generate a corresponding

report for the developers.

There is a very important point was discussed in (5) that we need to pay attention to.
The run-time detector interacts with local variables, or event I/O, networks during run-
time can cause side effects or even inject failure to the original function. We need to make

sure our failure detector has no side effects.

2.2 Checksum/Duplicator - Run-time Data Corruption De-

tector

The implementation from Keun Soo Yim et al. called HAUBERK (I]) focuses on data
corruption run-time full-range detector. It provides two high efficient methods. One is the
naive variable duplication method, the other one is the checksum duplication method(HAUBERK).
The comparison between original code, naive variable duplication, and HAUBERK check-

sum can be seen in Figure

10



2.3 Static Code Analyzer

Non-Loop Code Non-Loop Code Non-Loop Code
Ol=] | Og] | O 2 [ Definition )
chksum = chksum XOR () ®E] )
® S| ) Live
Check if Q is same as® J Range

Loop Code Loop Code Loop Code
wBO w80 WBO Use
ABO ABO A\ B Last use /
Non-Loop Code Non-Loop Code Non-Loop Code
chksum = chksum XOR () Check if () is same as@®)
Check if chksiim is zero "
(a) Original Code (b) Naive Variable Dupli- (c) HAUBERK checksum
cation

Figure 2.1: Run-time data corruption detector. (Source: image adapted from (1))

The naive variable duplication method duplicates the variables after the variable decla-
ration or assignment. The variable will be checked if they are the same before the next
declaration, assignment, or the end of the function.

The checksum duplication method(HAUBERK) uses 4-bit checksums to verify the final
variable status. The principle behind this method is familiar to the ECC memory (24)) (25).
First, set checksum by target variable after declaration. Secondly, duplicate the target
variable after the variable. Thirdly, check if the duplicate variable is the same as the
original variable to ensure the variable is not corrupt during checksum generating time.
(The duplicated variable can be removed/deleted from memory after this stage). Later,
update the checksum before the next declaration, assignment, or the end of the function.

Finally, if the checksum is 0 then the variable is not corrupted, otherwise, it is corrupted.

2.3 Static Code Analyzer

The implementation called DScope from Ting Dai et al. (2)) used this idea. It is a static
code analysis detector to detect an infinite loop hang due to corruption. This detector
targets detecting possible infinite loops raised by data corruptions in cloud services. We
can get an example in Listing 2.1} In the example, if the variable last is corrupted then

the while loop flag fileComplete is never set to be true, and causing infinite loop in

11
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the function completeFile. This kind of data corruption is even hard to be detected by
previously introduced data corruption detector in section [2.2] cause the input data can be

already corrupted.

Listing 2.1: Infinite loop example 1. (Source: code adapted from (2))

1 // DFSOutputStream.java #HDFS-5438 (v0.23.0)
> 1665 private void completeFile(ExtendedBlock last )...{

1 1667 boolean fileComplete = false;

5 1668 while (!fileComplete) {

s 1669 fileComplete = dfsClient.namenode.complete(src, dfsClient.clientName
, last);

o 1689 }

— 1668 —Yes @ - 1688
Mo T
1668

Figure 2.2: Loop path extraction of listing (Source: image adapted from (2]))

This method has three basic steps:
1. Extract Loop path to graph (like Figure
2. Check if loop depends on vulnerable operations, like I/0.

3. Analysis loop stride and bound to check if all paths of the loop can reach the exit

condition of a loop even if the variables that the exit flag depend on corrupt.

This method can detect, or in other words "predict" the infinite loop failure before the
production stage. This can not only lower the cost of deployment stage bug detection, but

also save time for service development. However, this one is the hardest to develop.

2.4 Machine Learning Detector

In recent years, AI/ML technology has shined in various fields, and the same is true in the

field of general-purpose error detectors.

12



2.5 Statistical Correlation Detector

All the Machine Learning related detectors, no matter they monolithic architecture fail-
ure (§), (9), (10), (I1), (12) (I3) or from microservice architecture failure from (I4)), are
all belong to supervised machine learning methods or supervised deep learning methods
(e.g. logic regression, RNN, Random Forest, Support Vector Classifier).

Parsing logs and analyzing system metrics are their common ways to achieve the final
target, and they have a common core framework

The framework includes two main parts, offline and online. The offline part start first,
its basic steps are preparing data, identify events and event mining. Then the online part
uses logs or metric data to predict failure. If the detector encounters a failure but fail to
predict, it will update to the failure detection model.

There are various advantages of this method. The most important one is a prediction!
This cannot be done by any other detector. Moreover, this method has high precision,
ranged from 88%(9) to 99%(11)). Last but not least, it can detect all types of failures from
software aspect to hardware aspect, from code line granularity to cluster granularity.

However, the coin has two sides, it also has many drawbacks. Initially, where, when, how
to collect the log and the system metric? Secondly, how to cold start the model training,
there are two methods. One is using historical data, the other one has injected failure and
train the model. These two methods cannot 100% cover all kinds of failures, especially
silent failure. The third problem is model portability. Due to it is based on log or system
metrics, it is hard to know its precision when the system cluster scale to larger or smaller.
Also, the log and system metric data vary from system to system, one trained model can

have a very low effect on other platforms.

2.5 Statistical Correlation Detector

The majority research (6), (26), (7)) of these methods are base on system metrics’ correlation
with failures. The most representative implementation is from the Z.-Y. Wang’s team
(3). The detector tries to detect all kinds of software related bugs in the microservice
architecture system on function granularity. It includes three basic parts, service trajectory
monitoring, service trajectory construction, and diagnostic.

The detection flow of this method is familiar to section|2.4, The detector collects system

metric data and use PCA to get failure correlation value to detect failure.

13
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2.5 Statistical Correlation Detector

Message = (requestUID, methodUID, callerUID, calleeList,info) 2.1)
info = (callType, serviceUID, order, startTime, endTime, duration) .

Figure 2.4: Message equation. (Source: equation adapted from (3))

The most special part of this method is the actions of its service tracing and microservice
relation network establishing’s strategy. We will use Figure to combine with examples
to help illustrate the action tracing method. In the examples, Request A’s traverse path
between services is S1 — S2 — S3 and Request B’s traverse path between services is S1 —
52 — S4. In the internal of each service, it used old-fashioned methods. The detector injects
Instrumentation into each service, the Instrumentation logs function executes elements and
order then form the relation network of each service’s internal code(Figure (a)). When
a function in service wants to call the external service function, the caller function packs
its execution information in the format of Message Equation Figure 2.4] then sends it to the
destination function. The caller message makes two subnetworks connect together(Figure
(b)). With the incoming request executing, the more different request the more services
connections add into the network(Figure (c), (d), (e)).

15
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Requirements for the Failure

Detector

3.1 Challenge in Design a microservice Architecture Failure

Detector

The software development architecture evolved from the monolithic architecture to the
microservice architecture. Along with the numerous benefits (e.g. better scalability, greater
agility and faster development cycles, module isolation), the microservices bring to software
development, it also brings many challenges to system monitoring and failure detection.
In this section, we will talk about the challenges that we may face in the failure detector

development and deployment. The microservice architecture is defined by (27) as:

An approach to software and systems architecture that builds on the well-established
concept of modularization but emphasizes technical boundaries. FEach mod-
ule—each microservice is implemented and operated as a small yet indepen-
dent system, offering access to its internal logic and data through a well-defined

network interface. (27)

From the definition, we can transfer the definition text to a graph example compared
with the monolithic architecture example as shown in Fig. Based on the definition

and graphs, we summarized 5 challenges in the microservice’s failure detector research:

e Failure Injection Location Changed
The monolithic architecture (MoA) has multiple software layers, the failure injector
can inject failure into the layers on demand. In contrast, when it comes to microser-

vices architecture (MiA), the software layer is no longer exists and replaced with

17



3. REQUIREMENTS FOR THE FAILURE DETECTOR

User Interface

Service Al Service A2

DataBase

(a) Monolithic Architecture (b) Microservices Architecture

Figure 3.1: Monolithic and microservices architecture. (Source: image adapted from ()

a distributed microservices network. A failure injector only can inject failures in
service. For example, if the tester wants to inject an I/O failure/congestion into a
software. In MoA, the tester can use tools to inject a failure in the data layer. In
MiA, the tester only can inject a failure in a service’s data layer. For instance, the
tester can inject a failure between service B2 and DB B2 but won’t influence the I/0

connection between service Bl and DB B1.

Moreover, all services in MiA communicate with each other by an interface, which

does not exist in MoA. This internal network is also available to inject failures.

e Failure Injection Method Complexity
In the MiA, different services can run with different statuses, like stop, starting,
running, hang. In contrast, the MoA’s components’ status is the same. The failure
injection plan changing causes the failure inject methods to change. Furthermore,
the MiA services communicate with each other by an interface. Many new protocols,
new mechanisms, and new hardware engage to support this target. Meanwhile, more
outages can happen in these places and require new failure injectors/methods to

simulate.

e Cross-cutting concerns
The definition of microservices means that each module in the MiA can run as

an independent system, which means that each service has/needs its configuration,
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3.2 Understading Failures targetede by MFD

recorder, indicator monitor, and health checker. Testers must deal with many cross-
cutting concerns challenges. For example, when the tester needs to check how much
system resource does a request require? In MoA the testers only need to check the
resource consumption between request and finish time. For the microservice archi-
tecture, the tester has to check each related services’ start time, finish time, and
corresponding resource consumption for the request, then summarize resource con-

sumption to get a final result.

e Distributed Detector
In the MoA and traditional cloud architecture, no matter if a detector is a statisti-
cal file failure detector(2)), a statistical correlation failure detector (6)), (26)), (7), a
runtime outage detector (1), (28), (5) or a machine learning (ML) failure detector
@), @), (@0, (), ({12, {3y, ([14), the detector has only one core detector to do
troubleshoot. It is not easy to make a one core failure detector in MiA, even if in an
external system metric/system log ML detector(14]) also needs a revolution.) How to
make a distributed failure detector or make multiple small detectors’ in each service

cooperate is a challenge.

e Trace Complexity & Failure Localization Complexity
Due to the highly coupled components in MoA become loosely coupled services in
MiA, the services use new methods to communicate, and it brings a challenge in
failure tracing and locating methods. This is because that the failure propagation
method of the microservice architecture is different from the traditional method. (For
example, in Figure service Al depends on service B1l. If there is an error in
service B1, then Al will also show an error. The developer should fix the error in
service B1 instead of trying to repair service Al, but two error reports may mislead
the developer.) We need to find new ways to locate where the error actually happened

in the microservice framework.

3.2 Understading Failures targetede by MFD

The start of this section presents all kinds of failures in related structures and newly
emerged failures in microservice architecture. Then this section discusses what kind of
failures can be detected by the MFD, so that readers can see whether the MFD detector
is suitable for their research topic or application. Besides, the scope of MFD is included.

Finally, the failure findings part will discuss failure.
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3. REQUIREMENTS FOR THE FAILURE DETECTOR

Failures live in Microservice Architecture

The software architecture is constantly evolving. Before we start to design an error detector
for a new architecture, we need to understand the most common and important errors of
its previous related architecture. After screening common failures and thinking about
the characteristics of the new software architecture, we will know all potential failures on
a new architecture. This not only allows the error detector developers to have a clear
development direction and plan, but also allows the detector users to clearly know which
kinds of error does the new detector can accurately indicate, which kinds of outage can

the detector potential dig out, and which kinds of error cannot be detected.

We found that two papers have done detailed investigations and classifications about
cloud computing failures. (16]) analyzed unexpected outages from 32 famous cloud services
in real life like WhatsApp, Ebay, Facebook, etc within 7 years from 2009 to 2015. (15)
conducted a thorough study of development and deployment issues of six popular and
important cloud systems (Hadoop MapReduce, HDFS, HBase, Cassandra, ZooKeeper,

and Flume).

The cloud development and deployment errors described in the two reports are roughly
the same. We merge the error classification results of the two reports in a new table.
There are two special circumstances about the table we need to point out. First, since the
natural disasters and power shortages mentioned in literature (16) are not in the scope of
computer science, we have removed these two errors. Secondly, the human error in (16)
is 100% coincident with other errors, and the cause of the error is relatively vague, so we

removed it too.

Microservices Architecture new concepts bring new potential failures to the failure detec-
tion field. As discussed in section [3.I]'s Failure Injection Location Changed, failures can be
injected into the communication interface. The most common failures in communication
network are I/O failed, congestion and data corruption(17) and we added commaunication
interface load, communication interface corruption, communication interface closed into

previous two literatures’ merged table and got Table
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3.2 Understading Failures targetede by MFD

Main Outage Sub Outage Remark
Stop (Fail) Stop (Fail)
Hardware Corruption Corruption
Limp Mode Limp Mode
Error
Hang

Multi-threads

Software Bugs
& Configuration Deployment,

Multi-threads

Cross-Service Dependencies

External Traffic Load Deployment
Security Attacks Security Attacks Deployment

(a) Failure Root Causes

Reliability

Performance

Scalability
Topology

Failed Operations

Impacts | Performance Problems

(b) Aspect & Impacts Failure

Table 3.1: Microservices architecture failures. (Source: table constructed from published

results(15) (16) (17)))

In the table, the failures are sorted into four main classifications. Root Causes (Hard-
ware), Root Causes (Software), Aspects and Impacts. A failure root cause means a failure
with a detailed phenomenon in the system, one root cause, one phenomenon. The Aspect
failure links to Quality of Service, it can be influenced by many evaluation metrics. This
means a root cause failure can influence many Aspects’ failures, on the contrary, an as-

pect failure links to multiple root cause failures. in the system. The Impact failure is an
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3. REQUIREMENTS FOR THE FAILURE DETECTOR

implication of the root cause. Root causes influence or leads to the final result of Aspects
and Impacts. During MFD plan stage, we choose what failure root causes do the detector
needs to detect. In the MFD design stage, Aspects that present quality of service and

impacts will also take into consideration.

Target Failure Explanation

Different error detectors have different goals and limitations, so does the MFD. In the
following paragraphs, we will illustrate the following 4 points, and the overview can be

seen in Table [3.1(a)|
1. What kind of failure does the MFD aim at?
2. What kind of failure does it can assist on failure detection?
3. What kind of failure does it not include in current version?
4. What is the MFD’s failure localization granularity?

As said in the introduction, we want to design the MFD as a detector that can sys-
tematically detect and localize software development failures before or at run-time. As a
consequence, the MFD does not have a specific mechanism to check hardware conditions,
but can help the users to detect related problems. For example, the MFD can give a
warning when a called function relies on services that are not available, which means the
MFD will also warn users when the dependent service are down due to hardware reasons.
In this case, the MFD can help users to detect hardware-related problems. The MFD also
has some limitations on the software side. The deadlock and data-race bugs are linked to
Multi-threading. If we want to deal with related failures, the difficulty will increase expo-
nentially. Thus, these two outages are not included in the MFD first version. In addition,
the Configuration, External Traffic Load and the Security Attacks belong to deployment
outages, which cannot fully controlled and fixed by services developer. These three out-
ages do not include the MFD failure detector scope too. Nevertheless, the MFD runs can
monitor and log all variables’ data, environment information, configuration setting at the
run-time, so it can assist the users to detect the related failure.

We target to detect failures on code-line granularity, and on variable granularity during
some circumstances (like nil pointer error). We studied failure is with respect to a statement

in a line deviating from the functionalities it is supposed to provide(e.g. data corruption
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3.2 Understading Failures targetede by MFD

on assignment statement, failed to get data from I/0), which is the function failure or the
service failure root cause.

To sum up, the MFD targets at detecting Error Swallow Failure, Error Unhandled Fail-
ure, Infinite Loop, Data Corruption, Logic-specific failure, and Communication Related

Failure on code-line granularity.

Failures Findings

In this section, we list the failure finding we found during failure-related research. This
is important because detect a failure that happens in the system is not the target we
purpose, but detect the failure, know the failure, and helps the developers to fix a failure
is more important. To achieve the goal we need to know what properties do failures have.
What common impacts trigger by failures. What confused developers most during failure

diagnosis?

Finding 1. Cloud Services Availability First

From (15)’s research, users often grade systems based on clear performance and availability
metrics, which are strongly related to QoS. In addition, (29) found that reducing availability
can lead to huge losses, about $285 million have been lost yearly because of the cloud

availability downgrade to 99.91%.

Finding 2. Failures Cause Long Service Downtime

From (I6)) we can know that all software root causes have a maximum downtime of more
than 50 hours. The software bug’s median downtime is around 6 hours, and its downtime
is the highest among all kinds of failure. Moreover, 69% of failures are reported with

downtime information.

Finding 3. Failure & Difficult to Diagnosis

As reported in (15), the median diagnosis time is 6 days and 5 hours. Even if locating
where was the bug happen is not difficult for developers, for example, the run-time can tell
the developer directly where did it stop, and the error handler can tell the developer where
was the bug, it is still difficult to fix failures. A common cause is that a failure phenomenon
can have multiple causes. For instance, the return of SQL query execution from a database

is empty can because of invalid SQL configuration, invalid SQL query, SQL server is down,
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3. REQUIREMENTS FOR THE FAILURE DETECTOR

and so on. The other common reason is insufficient exposure of run-time information to

developers, so the developer has to enable the logger and wait until the bug happens again.

Finding 4. Failure & Service Stuck

As (B)) says, nearly half (48%) of the partial failures cause some functionality stuck.

Finding 5. Silent Failure

According to (B))’s finding, 15% of the partial failures are silent, for example, data corrup-
tion, inconsistency, wrong results, etc. They are usually difficult to discover if there’s no

specific mechanism during the run-time.

Finding 6. Specific Condition & Failure

According to (15)’s investigation, we know that 71% of failures are triggered by certain
environmental conditions, configuration, inputs, or failures propagate from other processes.
The related failures cannot be fully detected in the development and production testings.
These failures require special mechanisms to detect at run-time. Furthermore, if a run-
time detector uses a different configuration or inputs, the detector may fail to detect such

failures.
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4

Framework Design and

Implementation

This chapter first provides an overview of the MFD design (section . It then illustrates
the detailed designs of the AST (Abstract Syntax Tree) File Parser & Detector (section
and the core idea of Runtime Failure detector (section [4.3)). In the final part, we will

discuss the detail of this research’s real implementation.

4.1 Design Principle

We discussed the failure detector final target clearly in section and did research on the
related detector which can inspire us in Chapter [2| In this section, we will first introduce
our design principle, then we will illustrate the MFD framework overview.

As said in section in the design stage the Aspects (QoS Related) and the Impacts
will also take into consideration because they are part of microservice’s important evalua-
tion components. The principles help developers to establish a common standard for the

implementation stage.

Principle 1: Ensure Microservices’ High Availability

The MFD should have a very basic complete failure recovery mechanism.

As Finding 1 (in section shows, no matter in what software development architec-
ture, high availability is an essential aspect. Due to different failures can have different
phenomenons and impacts. The MFD must have suitable mechanisms to recover service
from failure. The basic requirement of failure tolerance is the mechanism needs to recover

the server’s configurations and variables data to the status before the failure happens and
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4. FRAMEWORK DESIGN AND IMPLEMENTATION

is available to run for the next request. For partial failure, due to has high potential to
make stuck (Finding 4 in section [3.2), the tolerance mechanism should stop the hang/slow
phenomenon. For complete failure, the tolerance mechanism should recover service from

failure.

Principle 2: Traceable and High Failure Location Accuracy

The MFD should detect failures and trace the failure propagation correctly.

The section fully discussed that due to the module in Monolithic Architecture change
to isolated service system in Microservice Architecture, tracing and failure propagation be-
comes a challenge. To lower down failure detection time and help developers diagnose fail-
ure quickly, the detector should localize failure Accurately, and it is an important property

to evaluate the quality of the failure detector.

Principle 3: Log Runtime Content

The MFD should log variable history runtime information after the failure is detected.
From the Findings [3.2] we know the failure condition like configuration, system
metric, input variable, and variable history data is very important for failure diagnosis.
The MFD detector should have a mechanism to log all variable history data no matter
what kind of failure is detected.
For example, if line 5 in Listing [4.1] raises an exception, the detector then logs system

metrics, inputs, and variable history data (Table |4.1]).

Listing 4.1: History data example code.

1 func main() {

2 0 var rl = &Randomi{Integer: 1}
3 1 rl.func0Q

1 2 rl.Integer +=1

5 3 ril.funcl()

6 4 rl.Integer += 1

7 5 ril.func3()

s

Principle 4: Selectively Highlight Vulnerable actions

There are some vulnerable operations that can cause partial failures, especially the op-

eration like network interaction (includes external request and communication between
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Variable Name | Line Number Value
rl 5 Randoml1Integer: 3
rl 4 RandomlInteger: 3
rl 3 RandomlInteger: 2
rl 2 Randoml1Integer: 2
rl 1 RandomlInteger: 1
rl 0 RandomlInteger: 1

Table 4.1: History data example data.

internal services.), I/O, or some functions can cause fatal errors because of invalid configu-
ration, wrong input, or wrong logic. The MFD needs to localize them to avoid then cause

complete failure or infinite waiting.

Principle 5: Low in coupling and High in cohesion

The MFD’s program architecture should be low in coupling and high in cohesion to make
sure the MFD is open for extension.

In MFD, there will be multiple small detectors to cooperate with each other to realize
MFD'’s final target. The MFD needs to extend in the future to handle errors like Deadlock,
Data races problems, or even cluster level problems. Furthermore, current sub-detectors
need to evolve, redesign or remove during or after the first version development. Currently,
most detectors are low cohesion detectors, and this is one of the reasons each of they can
only one specific failure. Low in coupling and High in cohesion is open for extension and

modification, which is suitable for the MFD’s requirement.

Principle 6: Prevent Side Effects

The section points out the runtime detector has the possibility to corrupt original data
and has potential failure risks interacting with local I/O. We need to prevent those side

effects.

Structure

In this section, we will give the MFD architecture design overview illustration. The MFD
has two basic parts, the AST file parser part, and the runtime detector part.
The AST file parser (which will be explained in detail in (section 4.2]) part’s main func-

tionality is to extract file information for the detector, insert runtime detectors’ code, insert
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service action tracker and catch ignored variables. Besides, it also has basic logic familiar
to Static Code Analyzer (section[2.3) to detect potential infinite loops before code running.

The core parser and the core updater are two main components composed AST file
parser part. The core parser extracts the file code and passes extracted information to
the updater. The updater injects the required runtime failure detector, variables into the
code. One important thing that needs to point out is that the core updater is composed
of multiple sub-updater on the developer’s demand. The sub-updater can inject its own
kind of run time detector to the code or do some file modification.

The runtime failure detector part (which will be explained in detail in (section is the
part to detect and recover services from failure during runtime. The detector deep copies
runtime data and examines it. Once the failure happens, the detector logs the failure type,
failure location, current, and related functions variables history data, then starts internal

mechanism to ensure the service exit safely.

4.2 AST File Parser Implementation

This section describes AST File Parser’s usage of each component in detail. Although it
is just used to insert detectors into code, it has many components and programming ideas
to make sure the file can be manipulated correctly and extensible.

First, we will discuss two main components with related module in section [£.2l Then
this section explains the AST File Parser working approach in section The end of this

section goes deeper to some sub-updaters’ usage and structure in section [4.2

Main Components

As said in the section introduction, the AST file parser has two main components: the core
parser and the core updater. In a real implementation, there are multiple sub-updaters
that act as real file updating executors, and the core updater connects the core parser
iteration flow and all sub-updaters actions. We will explain core parser, core updater, and

multiple updaters one by one, then continue to introduce AST File Parser Flow.

The core parser

The core parser is based on Abstract Syntax Tree(AST), which is a way of representing
the syntax of a programming language as a hierarchical tree-like structure(30). In Figure
[41] we can see an example, the example contains ast.File node, ast.FuncDecl nodes,

ast.BlockStmt nodes. FEach higher-level class is a code packer for the lower level. A file can
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contain multiple functions. A function can contain multiple blocks. A block can contain
sub-code blocks or multiple code lines. The code line is the smallest level of executable code
and target granularity of the MFD (section . We set FILE Level (the highest level),
Func Level, BLoCcK Level, LINE Level (the lowest level) as the parser processing level.
Meanwhile, we need to analyze variables’ data during runtime to detect error swallow, error
unhandled, and data corruption failure. We classify the variable and variable properties

into element levels. The summary can be seen in Table

Contains

L.
Eal

*ast.File
| Can inertert more

¥ L SR
*ast.Ident [Jast.Decl

MName

v v +

ast.FuncDecl ast.FuncDecl ast.FuncDecl
v v v
ast.Ident *ast.FuncType *ast.BlockStmt
Mame Type *ast.BlockStmt
|
[Jast.Stmt

ast.ExprStmt

printin{ "Hellow" )

Figure 4.1: AST tree example.

We choose to use ASTs to parse and manipulate code files because it is safer than doing
those operations directly on the code as text or on a list of tokens. Manipulating text is
always dangerous because it shows the least amount of context. Moreover, the iteration of
AST provides a common iteration flow for all sub-updaters to ensure the "Low in coupling
and High in cohesion" design principle. The parser walks nodes by the Pre-Order Tree
Traversal method(31)), which visits the root node then left child, right child. When the

parser reaches a node in a new processing level, the node will send to the level’s updater
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Level Example
File Level Valid Code File
Func Level func main(O{ }
Block Level ifO{ }, whileO{ }, forO{ ¥ ...
Line Level | var a error, a.funcB(), a = b.funcCQ) ...

Table 4.2: Processing level corresponding code example.

to manipulate code. The relation with updaters illustrates detailed in section [£.2]

The core updater

The core updater’s main functionalities are providing common configuration (setting) stor-
age for all sub-updaters and providing a common interface, which is used to communicate
with the core parser, for all sub-updaters.

First, the core updater starts and initializes common configurations for all sub-updaters.
Then the core updater registers itself into the core parser. Then, all required sub-updaters
initialize and register into the core updater. After this step, as long as the sub-updater
registers successfully in the core parser, the core parser sends a common configuration for
all sub-updaters, which enables different sub-updater to communicate with each other.
Finally, the different processing level’s nodes can be updated by the corresponding sub-
updater through the core updater’s interface. The related operation is shown as shown in
Figure [£.2]s brown arrow line.

This design ensures Principle 5 Low in coupling and High in cohesion. Different sub-
updater has related function and target, but different sub-updater for different processing

levels can be easily added and removed.

The sub-updaters

The sub-updaters are the real executors to manipulate code files. They implement an
interface defined by the core updater. The function of sub-updaters includes creating sub-
updaters, updating sub-updaters configuration, extract information from sub-updaters,
and modify code in the code parser’s AST node iteration progress. All interface functions
names and usages are shown in the following list (the parameter and return type of function
is not shown in the list):

* The word ‘level’ in the list is the same meaning as the parser processing level explained

in core parser (section .
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1. Init 2. Init

3. Register m 5. Reg Sub Updater into Core Updater

K_\ Core Updater
Core Parser 1 P
4. Init Sub-updater
7. Code Node Imple
. -1 """ > (—| FuncLevel Sub_Updater 1
File Level D » 6.Insert
8.Updated Code Imple |
ode Node (—| FuncLevel Sub_Updater 2 9
2 Func Level 1 . MR 5
— QO |Impl
g €1 Updated Code | E (E—I Line Level Sub_Updater 3 | (C)
o o o
o I P CodeNode  _____ | £ [ £
c |Imple -
Block Level N - F— | (—| Line Level Sub_Updater 4 | g
pdated Code (&)
—— OodoNode F N
Line Level
4 €170 Updated Code” T
Figure 4.2: Relation and operation between core parser and core updater.
e Initiate function. It initializes the sub-updater with all sub-updater’s common

configuration shared by all sub-updaters and the sub-updater’s initialization con-
figuration value from the user’s input value or default value when there’s no input

configuration.

GetDefaultConfigValue function. This one returns the default own configuration
value of the sub-updater. This function will be called when a sub-updater’s setting

is not in the user’s input value.

SetLevelConfigByComments function. This function update configuration by com-
ment for the input AST node. If there’s no corresponding comment configuration for
the sub-updater the configuration of the current level will inherit a higher processing

level’s configuration (file-level will inherit sub-updater’s initialization value).

RemoveLevelConfig function. This function removes the lower level’s configuration
when the core parser iterates node from a lower level to a higher level (e.g. from line

level to block-level).

Process function. This is function is target at modifying, updating, inserting code

into parsed AST node by incoming arguments and sub-updater’s configuration.
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e ExternalGetInfo Under some special circumstances, the core parser depends on
executed sub-updater processed data. The required data can be extracted by this

function from executed sub-updater.

In the first version of MFD failure detector, we designed seven sub-updaters for it. Three
sub-updaters for failure detector: InfiniteLoopDetectorUpdater, DetPanicRecoverDetectorUpdater,
ValidatorUpdater, one service trace action sub-updater: DetClientExtractor and three
common variable sub-updater: RestoreUnderscoreUpdater, IgnoreldentUpdater, and

IgnoreStructUpdater. We will illustrate these sub-updaters in section [4.2] clearly.

Working Approach

Figure [4.3] shows the basic workflow of the AST File Parser, it has 3 main steps: Prepare

for file analyzing, Initialize core component and Walk and Traverse.

Core Components
Preparation Stage Initial Stage File Parsing Stage

N\

Detect Processing

File Filter Initialize Core Parser Level Accurately
File AST Parser Initialize Core Update Configs
Updater
Initialize Sub-Updater Update AST Node
- J

Update Imports

Figure 4.3: AST file parser working approach.

Preparation Stage

Filter and parse project files are the first step of preparation. In a project there are
some mature modules and generated files (like GRPC communication protocol generated
from proto file), those code blocks are fully tested and validated by many projects and
programmers which means they are unlikely to have essential failure and many of them
has sound failure recovery mechanism. Besides, they are not the core logic of developed
microservices. In this case, we can skip and not examine these files to save project parse
time and temporal & spatial resources during runtime. After the file passes the file filter

and if it is a code file, the corresponding programming language’s parser will extract the
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code file to the AST tree, the extracted data and original file information stores in memory
and pass to the core parser initialization when all project files are examined. The flow is
shown in Figure [4.4]s Parse File Stage.

Then we need to initialize the core parser, the core updater, and required sub-updaters
one by one, the graphical illustration can be seen in Figure [£.4]s Core Component Ini-
tialization Stage. The core parser is initialized with parsed AST file nodes, related file
information, and each processing level updater’s configuration. Then the system initializes
a new core updater with the user’s input configuration. After this, there’s a list of required
detector sub-updaters, which are listed in section [£.2] create and register into the core
updater. Once all sub-updater creates successfully, the core updater inserts a common
configuration that shares configurations for all sub-updaters and can be used to communi-
cate with other sub-updaters. Finally, the core updater registers into the core parser and

the preparation stage is finished.

Parse File Stage

" 1. Init Core Parser

t Core Updater

__/' 4. Reg Sub Updater into Core Updater

\ 6. Register i v . H

. y y
v -

Core Parser Core Updater -

_ 1. Init Core Parser 3. Init Sub-updater ‘ 1
Required Updater ° o File Level T
Configuratin v { ¥
[rowtors s wpomm 1 Je-—-
S.Insert !
Required Updater . 1
Configuratin *| Block Level

Required Updater . .
Confi;uratin v Linelevel | | |

Core Component Initialization Stage

--'\. ]
/2. Init Core Updater |
// :

| Comman Config
N A

1

Figure 4.4: Preparation stage.

Traverse AST Tree
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Walk and Update In this stage, the core parser has a set of AST file nodes that need
to process. The core parser iterates each AST file node, in the iteration, the core parser
uses a tree walker to traverse the AST file node in Pre-Order and interact with sub-updater
to manipulate files. As said in section the core parser has four processing levels: File
Level, Func Level, Block Level, and Line Level. The walker walk starts from File Level, and
won’t go to children of Line Level. There’s a walker traversing example in Figure [{.5[s Core
Parser Iteration part. When the walker reaches a processing level, the core parser must use
the core updater’s UpdateConfig with the current walker cursor’s node-related information
to renew updaters’ configuration. Then the core parser can interact with sub-updaters to
modify code on demand. In the MFD, the File processing level does not have a sub-
updater. The Func Level uses DetClientExtractor to draw relation map among services
and functions. The Block level uses InfiniteLoopDetectorUpdater sub-updater to inject
runtime infinite loop detectors for for loop and while loop code blocks and this sub-
updater uses static file analysis method to check potential infinite loop, which can warn the
user before code running. The line-level has IgnoreIdentUpdater, IgnoreStructUpdater,
DetPanicRecoverDetectorUpdater, ValidatorUpdater, RestoreUnderscoreUpdater, to
inject runtime validator and runtime panic failure detector. If there’s any detector injects
into the code file, the detector injects detector declaration and import into the code file.
The figure illustration is shown in Figure 4.5

Detect Code Line Granularity File, Func, Block Level has specific classes (ast.File,
ast.FuncDecl, ast.BlockStmt) as indicators to know the walker’s cursor reaches a new
processing level. But how does the parser know that it reached the line level? A code line is
the smallest granularity that contains executable code. It has three basic statement types
in any programming language: declare statement, expression statement, and assignment
statement, the examples are shown in Table [£.3] When the core parser walker encounter
ast.DeclStmt, ast.ExprStmt and ast.AssiStmt the walker knows it reaches the code line
level. Due to the line processor is the lowest processing level, so the walker won’t go to

the child node as shown in Figure how to deal with element level will discuss in the

next part.
Type Example
Expression Statement a.b.cQ
Declare Statement var a = fmt.Sprint(""), var a int ...
Assignment Statement a := b.c.d()...

Table 4.3: Code statement example
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Figure 4.5: Walk and traverse.

Element Level Extractor No matter which kind of runtime failure detector needs to
interact with variables and properties in original code. The detector-related sub-updaters
need a module to extract element level information before the sub-updaters send the AST
node to sub-updater to manipulate code file, we call the module as Element Level Extractor.
This means the Process operation to manipulate has three subcomponents shown in Figure
[4.6} extract elements, send extracted elements and AST node to an updater. The updater

returns the processed AST node.

Insert Runtime Detector Code Stage

First, we analyze the input of the extractor. The input of element extractor has four
types, declare statement, expression statement, and assignment statement from code line
and expression from loop exit condition. The common part of the input is that all input
types are composed by expression (ast.Expr in Golang). The difference is that expression
statement and assignment statement has two sides split by token, the split expressions on

the left side are right side execution return result. So the basic logic of extractor is the
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Figure 4.6: AST parser element extractor.

extractor iterate and processes all expressions in input, extract expression to get variables

and return. The element extractor has three returns, shown in the following list:

1. Left side traverses return. It contains results after processing the left side of the line
statement split by token if the statement is that expression statement and assignment

statement, or the return is empty for other statement types.

2. Right side traverses return. It contains results after processing the right side of
the line statement split by token if the statement is that expression statement and
assignment statement, or the return is the result after processing the whole statement

for other statement types.

3. All combined return. It combines the previous two previous return results.

The result format also needs to take into consideration. The runtime detectors need to
interact with variables and properties, so the core elements in the result are all variables
and properties in the code line. Can we simply put them into a set or array and return

the result? The answer is no because it has the potential to make the detector raise
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complete failure. For instance, in List the detector want to check if the property
s.Mongo.Collection corrupted. If the property s.Mongo is a pointer and points to nil
due to data corruption or wrong program logic, the detector will raise a complete error.
We need to return all its related parent property and variables in the return to help the
detector validate a property’s parent properties and variables. In this case, we use a tree
to store the processed result, the tree uses the hierarchy method to store variables and

property in lines, an example is shown in Figure [4.7]

Listing 4.2: Potential failure example.

1 // Modified part of

github.com/kzmain/hotel-reservation-platform/services/user/server.go

V]

func (s *Server) mgoGetUser(user *user.Request) error {
! var err error
5 s.Mongo.Collection, s.Mongo.Database := s.Mongo.DB("user-db").C("user"),
s.Mongo .DB("user-db")
6 Detector.Detect (s.Mongo.Collection) // Example Detector

7 err = s.Mongo.Collection.Find(bson.M{"_id": user.Username}) .0One (&user)

user.name, user.pwd = s.SQLClient.Func(), s.MemDbClient.Func()

Figure 4.7: AST parser element extractor result tree.

This extractor’s final part introduces how does the extractor get variables or properties
from code expression. The element extractor iterate and processes all expressions from the
input. The extractor doesn’t always store expression directly in result trees, because not
all expressions contents are variable or property. The extractor ignores some expressions
types. As the Table [£.4] shows, the type like Function Type, Slice Type, Map Type ... are

the expression types to represent the variable’s type, which does not contain the variable,
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so the extractor ignores these expressions. The extractor converts some expression types
to standard variable/property expressions. Call Function Type, Pointer Dereference Type
are Pointer Reference Type, Binary belong to the convert condition. This is because the
code expression contains variable expression and combined with token, the extractor needs
to remove these token then store the converted expression in the result tree. For variable

expression and property expression, the extractor directly stores them into the result trees.

Expression Type Example AST Class in Golang | Type
Variable varA ast.Ident insert
Property varA.PropertyB ast.SelectorExpr insert

Call Function varA.PropertyB.FuncC() ast.CallExpr convert
Pointer (Dereference) | var a = *b (*b is ast.StarExpr) ast.StarExpr convert
Pointer (Reference) | &a ast.UnaryExpr convert
Binary Expression a==>» ast.BinaryExpr convert
Function Type a = funcO{} (func(){} is ast.FuncLit) | ast.FuncLit ignore
Slice (array) Type Oint{} ast.ArrayType ignore
Map Type map [KEY_TYPE]VALUE_TYPE ast.MapType ignore

Table 4.4: All expression kinds table.

There is a special condition for the variables’ extraction. It is variable ignorant in an
assignment statement. Sometimes the call expression on the right side of the assignment
token can return one or multiple instances and the developer doesn’t need them to par-
ticipate in the remaining logic, so the developer uses an Underscore to ignore them (e.g.
rstl, _ = a.returnTwoInstance()). This is a condition that the programmer forgets to
write an error handler but uses an Underscore to ignore the error. When the extractor en-

n

counter a variable whose name is " ", the extractor renames the underscore variable with

random variable name start with "astUnderSocre" prefix (e.g. rstl, astUnderSocreB =

a.returnTwoInstance()).

Insert Detector Import Declaration and Related Module

The detector-related sub-updaters only inject runtime detectors call expression state-

ments to check failure in code. While the declaration of the detector and related module
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is not injected. In this condition, if the code file has a detector, the code compiler won’t
understand the code meaning.

After previous AST tree traversing, the AST File Parser examines if the sub-updaters
inject the runtime detector call expression. If the parser gets the answer "Yes", the parser
will examine what import does the code file lack because runtime detectors’ required mod-
ules can have overlap with other code. Finally, the parser inserts needed imports and

detector declaration.

MFD’s Sub-updaters

In this section, we will illustrate each sub-updater usage in detail. We list 7 sub-updaters
in section [£.2] and also know the sub-updaters modify code file in the core parser’s file AST
traverse process. But why do we need these updaters, what does each sub-updater do, and

final output examples are vague, and we will explain these vague points.

Action Tracer & Vulnerable Action Protection sub-updater

Trace request action among services and localize failure is a challenge (as said
in Chapter , in our implementation we used a static code analyzer to draw a network
of internal services and also links to external services. The step is the same as shown in
Figure [2.3] the difference is the function link in that method uses Java Instrumentation to
extract function information and function links, this method uses a static file parser.

We also use a mechanism familiar to section (Statistical Correlation Detector in
Related work) to trace request action during runtime, which needs to insert related code

by sub-updater. We discuss related sub-updater in the following paragraph.

ClientExtractorVulnerableOptProtector One important thing
that needs to bear in mind is that internal/external service communication, I1/O, etc are
vulnerable operations. We need to use the timeout method or other mechanism to recover
vulnerable operations when it is partial failure status.

Protect Vulnerable Functions The common partial failure can cause an infinite loop,
stuck, so the idea is to set time out and error handlers to protect Vulnerable functions.
ClientExtractorVulnerableOptProtector sub-updater uses rule matching method to de-
tect 1/O client, services client declaration and vulnerable operation execution. The rule
matching method can be regex pattern matching, AST node structure matching, user tag-

ging, or even use the Machine Learning method to match. Once the sub-updater find an
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I/0O client, a service client, or any other vulnerable operation client, the sub-updater will
add a timeout setting to it if the client can set such attribute (example in List . If
there’s a vulnerable operation and the operation’s client cannot set a timeout, this sub-
updater will pack the function and implement the timeout for the function. (example in
List timeout 1 second). If the function does not return after the timeout, the packed

function will raise panic() error to indicate failures.

Listing 4.3: Rate microservice example.

1 // Original Code Example
> session, err := mgo.Dial(s.MongoAddr)

3 s.Mongo = session

5 // Converted Code Example

¢ session, err := mgo.Dial(s.MongoAddr)
7 session.SetSocketTimeout (five)

s session.SetSyncTimeout (five)

9 s.Mongo = session

Listing 4.4: Rate microservice example.s

1 func VulnerableFunc() Result {

5 // Original Code Example

¢ var example Result = VulnerableFunc()

s // Converted Code Example

9 var example Result

10 tmpVar := make(chan Result, 1)
11 go func() {

12 tmpVar <- VulnerableFunc()

530

12 select {

15 case res := <-tmpVar:
16 example = res

17 case <-time.After(1 * time.Second):

18 panic("VulnerableFunc() Timeout")

Draw Service Map DetClientExtractor is an updater to draw a service communication

map. The microservice’s definition says internal services communicate with each other by
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an interface. So it is easy to use the rule matching method to:
o Get service name if the code file is a service’s code file.

e Get what function does current service have and how does internal function link to

each other.
e Get what other services link to the service.
e Get connection between the service function with an external service function.

With so much information it would be easy to draw connections among functions and
functions, services between services. We will illustrate it with code in the demo project,
shown in Listing [4.5] and Figure [£.8] The example service in code Listing [£.5] uses gRpc
as a communication interface.

First, we need to check if the code file belongs to a service. The gRpc service communi-
cation interface register pattern is [SERVICE_NAME] .Register [SERVICE_NAME]Server(,),
which can indicate this is a service and the service’s name. In the example, List Line 51,
the service’s communication interface is established by rate.RegisterRateServer(srv,
s). The code means this is a service code and the service name is ‘rate‘.

Then during the iteration, we can get the function name at Func processing granularity,
and we can log a list of all service internal functions (Figure (b)). Furthermore, we
need to classify what functions are internal functions and what functions communicate
with other services.

Later in AST nodes iteration, we can get relations between services and store them in
a tree. The internal function link establish is easy to understand, they can use pattern
RECEIVER_NAME.CALL_INTERNAL_FUNC() to match , for example code in the List [£.5] Line
97, Line 154, Line 157, Line 159, Line 198 (Figure c)). The link to other service’s
function has a special pattern: the communication argument. Service communication
in Microservices Architecture uses a special argument to: 1) Share security principals
and credentials. 2) Trace Local and distributed information. In gRpc the argument is
context.Context. It can use RECEIVER_NAME.OTHER_SERVICE_CLIENT_NAME.QOTHER_SERVICE_FUNC (CONTE
.. .) tomatch, for example Line 85, we can know the function GetRoomRatePlansByRoomIdsAndDatesAndR
connect to profile service client’s GetRoomProfileByRoomId function (Figure [£.8(c)). The
link to external/special service is a little complex, it requires the MFD user to set the
matching pattern. For example, s.MySQL.FUNCTION() means current processing function

links to MySQL storage service, COLLECTION.Find() means current processing function
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links to Mongo storage service, RECEIVER_NAME.Memcache.Get () means current processing

function links to Memory Cache storage service. for example code in the List Line 135,
Line 171, Line 181 (Figure c)’s green part).

rate.RegisterRateServer(srv, s)

Rate Client

(@
Rate Client

e N\

+ GetRoomRatePlansByRoomldsAndDat:
+ GetRoomRateByRoomIdAndDate
+ GetRoomRateldByRoomIldAndDate

- keyGetRoomRateByRoomldAndDate
- allGetRoomRateByRoomIdAndDate

- dbsGetRoomRateByRoomIldAndDate
- sqlGetRoomRateByRoomldAndDate

- mgoGetRoomRateByRoomIdAndDate

A\ J

(b)

Profile Client

+ GetRoomProfileByRoomld J

Rate Client

+ GetRoomRatePlansByRoomldsAndDat
+ GetRoomRateByRoomldAndDate
+ GetRoomRateldByRoomldAndDate

- keyGetRoomRateByRoomldAndDate
- allGetRoomRateByRoomIdAndDate

- dbsGetRoomRateByRoomldAndDate
- sqlGetRoomRateByRoomIdAndDate

- mgoGetRoomRateByRoomIdAndDate

( 7\

(. J

(©

Internal Service Client

External/DB Client

l} MemCache Service

> SQL Service

> Mongo Service

Figure 4.8: AST parser’s client extractor sub-updater.

After all service code files are processed, this updater connects all service relation tree

to form the service connect network (like related work in Figure [2.3)).

Listing 4.5: Rate microservice example.

1 // Cite from

github.com/kzmain/hotel-reservation-platform/services/rate/server.go

50 func (s *Server) RegGrpcServer(srv *grpc.Server) {

51 rate.RegisterRateServer(srv, s)

54 func (s *Server) InitClients() error {

55 profileClient, err

s.Server.InitProfileClient ()

56 s.profileClient = profileClient

63 func (s *Server) GetRoomRatePlansByRoomIdsAndDatesAndRoomNumber (ctx

context.Context,

o {
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85
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168
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181

roomProfile, err := s.profileClient.GetRoomProfileByRoomId(ctx,...)
é;ilyRate, err = s.GetRoomRateByRoomIdAndDate(ctx, ...)
}
func (s *Server) GetRoomRateByRoomIdAndDate(ctx context.Context, ...) (...,
oA
}

func (s *Server) keyGetRoomRateByRoomIdAndDate(roomId string, roomDate
string) string {

func (s *Server) allGetRoomRateByRoomIdAndDate(...) error{

item, err = s.Memcache.Get(..., ...)

func (s *Server) dbsGetRoomRateByRoomIdAndDate(...) error{

err = s.sqlGetRoomRateByRoomIdAndDate (dateRate)

err = s.mgoGetRoomRateByRoomIdAndDate (dateRate)

err = s.sqlGetRoomRateByRoomIdAndDate (dateRate)

func (s *Server) sqlGetRoomRateByRoomIdAndDate(...) error {

err := s.MySQL.Get(dateRate, query)

func (s *Server) mgoGetRoomRateByRoomIdAndDate(...) error {

¢ := s.Mongo.DB("rate-db").C("rate-spec")

count, err := c.Find(...).Count()
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192}

193

105 func (s *Server) GetRoomRateIdByRoomIdAndDate(..., ...) (..., ...){

198 err := s.allGetRoomRateByRoomIdAndDate (&dailyRate)

204}

ServicelnternalMessageUpdater This updater only processes the

service function implements a microservice communication interface to help trace actions
of incoming requests. In the previous sub-updater’s illustration, service communication
uses a special argument to 1) Share security principles and credentials. 2) Trace Local
and distributed information. In gRpc the argument is context.Context. During runtime,
we can add requestID, check data corruption request variable into context to trace action,
and log start time at the start of function and end time before the return statement. The

example parsed code can be seen in the List.

Listing 4.6: Update conxtex example.

1 func (s *Server) GetRoomRateByRoomIdAndDate(ctx context.Context, req ...)
(..., error){

ctx, s.TracerTimer = trace.S(ctx, "clientName","CalledFunctionName")

3 defer s.TracerTimer.E()

This is familiar to section 2.5 Microservice Statistical Correlation Detector in Related
Work. The two methodologies have one main difference. This method draws the service
communication network before runtime, the section [2.5| uses Java Instrumentation during
runtime to draw the network during runtime. In our implementation, we use a static code
analyzer combined with a runtime tracer because this mechanism base on a logic that can

easily migrate to different programming languages.

Common variable sub-updater

The common variable sub-updater does variable filtering, variable renaming, new variable
declaration after the element extractor returns result trees. It is a basic sub-updater for
any variable-related sub-updater. This means when an AST node wants to process a node,

it passes line-level nodes to the element extractor and gets element results, as shown in
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Figure then all results will pass to these three common sub-updaters before sending to
the detector manipulation sub-updater to filter the variable that needs to process, or add
new variable declaration.

We need these three updaters because the detector or cooperating module cannot take
some special type, variable with a special name, or need to insert some variable in imple-

mentation.

IgnoreStructUpdater This ignores the variables with type declare in the sub-updater’s
configuration. For example, if the user doesn’t want to trace the variable data corruption
of type, int the core updater will ignore related variables during the process. The MFD
has this is because some enumerated types need to ignore in failure detector/injector im-

plementation.

IgnoreldentUpdater This ignores the variables and properties with names declare in
the sub-updater’s configuration. For example, if the user thinks "user.pwd" is a save prop-
erty and adds it into the sub-updater’s configuration, the updater will ignore "user.pwd"
during the process. The MFD has this is because some configuration variables need to

ignore in failure detector/injector implementation.

RestoreUnderscoreUpdater In section [£.2]s Element Level Extractor discussion, the
extractor convert Underscore variable to variable with random name start with "astUn-
derSocre" prefix.

This sub-updater inserts the random variable declarations’ statement before the random
variable code line if the other code sub-updaters want to keep the random variable name.
If other sub-updaters do not want to keep the random variable name, this sub-updater will
convert the variable’s name back to underscore. All examples are shown in Listing [4.7]

The MFD needs this one to simulate failure ignore and failure swallow in failure injection.

Listing 4.7: Restore underscore updater.

1 // Code before Element Level Extractor

rstl, _ = a.returnTwolnstance()

V]

1+ // Code After Element Level Extractor

5 rstl, astUnderSocreB = a.returnTwolnstance()

7 // RestoreUnderscoreUpdater convert variable back to Underscore

¢ rstl, _ = a.returnTwolInstance()
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10 // RestoreUnderscoreUpdater keep new random variable
11 var astUnderSocreB interface{}

12 rstl, astUnderSocreB = a.returnTwoInstance()

Runtime failure detector related sub-updater

The sub-updater of this section inserts runtime failure detector code and does static code
analysis on the input AST node. For runtime detector, we only give code insert demon-

stration in this section, the mechanism will introduce in section |4.3

InfiniteLoopDetectorUpdater This sub-updater inserts a runtime Infinite Loop De-
tector. The runtime detector’s code has two parts. This insertion first part is an infinite
loop detector’s register, which indicates it has a loop here. The register uses continue
condition’s elements, code line position, random ID, action tracer, and timeout bound as
parameters. The insertion second part is the detector to check if there has an infinite loop

in runtime and recover the function from the infinite loop. The code example shows in the

List. €8

Listing 4.8: Insert infinite loop updater

1 // Original Code Block
> for (_sDate.Before(_eDate)){

6 //Code with infinite loop detector

7 Detector.InfiniteLoopPrepare(token.Position{}, s.TracerTimer,
"timeBound0.600000", _sDate, _eDate, "special_id")

s for (_sDate.Before(_eDate)) {

9 defer Detector.Recover()

10 Detector.InfiniteLoopDetect("special_id")

11}

Moreover, this sub-updater uses a mechanism familiar to section[2.3|Static Code Analyzer
to check if the code has an infinite loop. The mechanism checks if the exit condition is
always true (like boolean true, 1 > 0). If the answer is true, the updater will inform the
MFD user, else the sub-updater gets variables of loop exit condition. The sub-updater
checks if the variable in the exit condition is updated in its loop code block. It’s important

to note that the mechanism does not analyze internal logic, related function or complex
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exit expression, so the mechanism can only detect a small part of infinite loops. So the
static code analysis part only can detect always true, and the exit condition is not updated
in the loop’s condition. However, if the exit condition is updated by a special function

without the exit condition’s variable, the analyzer will give a false alarm.

DetPanicRecoverDetectorUpdater This sub-updater inserts runtime Panic Detec-
tor. The detector catches complete failure during runtime to detect logic-specific failure,
the detector uses code position, tracer, and vulnerable indicator as parameters. The code

example shows in List. [£.9]

Listing 4.9: Insert panic failure detector.

1 // Original Code Block
var rst = caller.VunFunc()

V)

14 //Code with Panic Failure Detector
5 defer Detector.PandicDetector("Vulnerable VunFunc()", token.Position{},
s.TracerTimer)

¢ var rst = caller.VunFunc()

ValidatorUpdater This sub-updater inserts the Validator Detector into the code file.
The detector has twos parts, the first part is before the code line to check if the code
line’s variables/properties have data corruption failure and nil pointer error. The second
part is after the code line to check if the code line has error handle failure. The code
example shows in the List. The validator uses the if statement block to check the
variable/property’s value then check children’s properties value, which looks like multiple

trees.

Listing 4.10: Insert validator detector.

1 // Original Code Block
> resUser, inPwd := &user.Request{Username: req.Username},
s.getSHA256 (req.Password)

. //Code with variable validator

5 if !Detector.VDetect("req", token.Position{}, PreMode, req, s.tracer){

6 if !Detector.VDetect("req.Username", token.Position{}, PreMode,
req.Username) {

7 }

8 if !Detector.VDetect("req.Password", token.Position{}, PreMode,

req.Password) {
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0}
11 resUser, inPwd := &user.Request{Username: req.Usernamel,
s.getSHA256 (req.Password)
12 if !Detector.VDetect("req", token.Position{}, PostMode, req, s.tracer){
13 if !Detector.VDetect("req.Username", token.Position{}, PostMode,
req.Username){
14 }
15 if !Detector.VDetect("req.Password", token.Position{}, PostMode,

req.Password){

4.3 Runtime Failure Detector Implementation

The runtime failure detector detects failures, logs failures, related context, traces failure,
and recover service from failure. To ensure section[d.I|Low in coupling and High in cohesion,
the failure detector also uses core detector cooperate many sub-detector to detect failure.
The core detector stores the common setting for all sub-detectors and defines the interface
of sub-detectors. The sub-detectors detect different kinds of failure, and they are called
from the core detector during runtime. The structure example is shown in Figure[£.9] This
structure is familiar to updater & sub-updater in section AST File Parser. In future
evolving, a developer can easily add or remove a sub-detector from the core detector. In
the following sections we will discuss all detectors’ usage and workflow, in Table [£.5] you

can get an overview of all runtime detectors.

Detector Name Illustration
Service Internal Message Tracer Trace Action, Check Data Corruption in service communication
InfiniteLoopDetector Detect Infinite Loop
Validator Detect Swallow Error, Unhandeled Error, Data Corruption, Logic Error
PanicErrorDetector Detect Complete Failure, Handle Failure Info From Other Detector

Table 4.5: Runtime failure detectors.

Side Effects For All Detectors

Because of the detector’s code runs together with the original services code, mechanisms
are required to avoid detector introduce failure into service. The first one is variable

duplication, all input arguments are duplicated at the entrance of the detector. Secondly,
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Figure 4.9: Core detectors and sub-detectors

all detectors have a recovery mechanism to ensure the detector’s failure won’t influence the

service’s running.

Core Detector

The core updater has a map to store all sub-detectors who implements the sub-detector
interface, the runtime can call specific sub-detector by type and input argument.

The core updater has a "recovered" boolean attribute to indicate if the service is recov-
ered from complete failure, and a "reason" string attribute to store the detected failure

reasomn.

Service Internal Message Tracer & Communication Data Corruption De-
tector

The usage of this detector is to detect data corruption in service communication and to
trace service actions of the incoming requests. This detector only works in the service
function with communication interface. The graph illustration of this detector can be
found in Figure [4.10

The section Runtime failure detector related sub-updater’s ServicelnternalMessage-
Updater insert a logic to duplicate request data into context.Context before the server
send request.

If the detector has a validator variable in context, The detector will compare the in-
coming request variable and validate the validator variable in the service communication

context, if the value is not the same the core updater sets the failure reason attribute as
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Figure 4.10: Internal message tracer & communication data corruption detector.

"ServiceDataCorruption" and raise except failure. The failure will be handled by section
[4.3 Panic Failure Detector.

After data validation, the detector will set a request ID, if the incoming context does not
have one. Then the detector gets the previous caller name, logs incoming time, incoming
request-id, incoming request URL, current function name so that the detector can trace
the action of the incoming request and localize failure. The time will be logged again after

the service function return.

InfiniteLoopDetector

The usage of this detector is to detect infinite loop in runtime. Infinite loop is a common
partial failure in code.

The loop detector does preparation before enter the loop code block. It starts a new
timer to check the loop running duration. In the loop block, the loop detector checks the
loop execution time every time at the start of the new execution circle. Once the execution
duration reaches timeout bound (determined by input, default timeout is 0.2 seconds), the

core updater sets the failure reason as "InifniteLoop" and raises complete failure. The
failure will be handled by section

Validator

The validator detector has two parts, "Pre" checker before a code line execution and "Post"

checker after a code line execution.
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4.3 Runtime Failure Detector Implementation

The "Pre" part is to detect data corruption failure and register variables into a validator.
The Figure shows this part’s workflow. If the input is an error, the check finish, else
the detector goes to the next step. If the input variable/property cannot be found in
detector registration, the detector will register the input into the detector (deep copy and
store). If the input is in the detector, the detector will check if their value is the same.
If the detector does detect failure, the core detector will set failure reason property to

"InternalDataCorruptionError" and raise fatal failure.

In Variable

Is In Detector?
Register The Variable

Check Data Corruption

Data Corrupted?
Yes
Raise Exception

Figure 4.11: Validator pre part.

The "Post" part is to prepare for data corruption examine, deal with detect error swal-
low and error unhanded problem, which can be triggered by a communication interface
overloaded, communication interface closed and vulnerable operation partial failure.

The Figure shows workflow of this part. Post validator registers object instances
and pointers (except for error type) in code line after execution. If the pointer is nil and
not an error type, we regard the error happens in execution, because the function failed to
set the value to the pointer. The detector will set the core updater "reason" property as
"ExternalExecutionFailure" and raise complete failure. If the input is a non-empty error
and the variable name starts with "astUnderSocre", which was " " and updated by AST
Parser’s RestoreUnderscoreUpdater, the core updater will change the "reason" property

as "VulnerableOptNotHandled" and raise complete failure.

DetPanicRecoverDetector

The "DetPanicRecoverDetector" is injected before every code line, it handles complete
failure by logic problem and complete failure raised by other detectors. It logs, error code
line, error reason, runtime variable value after the failure happens, and also the request-id

& variable context to trace action failure. The sub-detector uses defer to log the previous
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Register/Update Input
Yes (Ignored Error)
Raise Exception

No (Unhandled Error)

Figure 4.12: Validator post part.

context and use "recovered" as a log flag. When a complete failure is triggered, the defer
function runs from the failure location to the start of a function. If the sub-detector detects
the fatal failure, the recovered property of the core detector is set to true and logs failure
reasons. When a deferred detector function recovered flag is true, the detector logs required

history variable data.
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Experimental Evaluation

We evaluated the MFD to know: Does the approach work well in microservice architecture?
Can The detector detect and trace our target common failures in the real world? Does the
MFD have false alarms? What extra-temporal and spatial does the MFD cost?

To get the answer we run controlled variable experiments on a popular open-sourced
microservice research program to evaluate the efficacy of the MFD failure detector. We
mimic anomalies in the evaluation program and diagnose the failures using our MFD failure
detector.

In this section we will introduce section Target system Information (Hardware In-
formation and Metric We Collected), section Simulation Application (Simulate Ap-
plication in Real World), section Failure Injection (How does failures inject), section
to check what Hardware and Time overhead does the MFD costs, section to show

evaluation results and discusses related reasons.

5.1 Target system Information

We perform our experiments on Vultr.com’s dedicated server, with 320 GB SSD, 6 CPU,
16384 MB Memory, and 5000 GB Bandwidth. The evaluation-related runtime environment
is The Docker Engine is v20.10.7., the Golang version is gol.16.3 darwin/amd64, and
Ubuntu 20.10 x64.

All Running information is monitored by prometheus(32)), grafana(33)), cadvisor(34) and
logged by promscale(35) in Postgres SQL database. They run different services at the same
time with the simulation application. At every one second, they collect 88 metrics from

every docker container, the most important two metrics are CPU usage, memory usage.
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5. EXPERIMENTAL EVALUATION

5.2 Simulation Application

We need to choose a suitable project to test our failure detector. Then we need to set some

criteria to select a suitable demonstration project:
e Still maintained in the year 2021
e Available to get source code
e Available to deploy on the development machine and the testing machine
e Project set up by research group or some paper did research on the project

e The project is written by one programming language. (Though our detector bases
on logic and can be extended to any language, however it needs much time to write
different language version. We need to ensure it has high accuracy and efficiency in

one language first)

We search some projects and analysis them, the result is shown in Table [5.1]

Name Language Type Others
Train Ticket(36) Multi-Language From Research Group High System Requirement
Sock Shop(37) Java From Commercial Company | Cannot Get All Source Code
Hotel Reservation(38) Golang From Research Group Can start and well maintained

Table 5.1: High star microservice test platform.

In our evaluation, we choose the hotel reservation project from (38)). The project’s last
update is on July 2021, and it is being set up by the SAIL group at Cornell University. The
microservice is developed in Golang with the gRpc communication interface. However, it
still has some shortages. For example, it has a data inconsistency problem, a service’s
database not only stores the data related to the service but also stores data related to
other services. In this situation, one data update/change does not sync to all duplication,
which causes a data inconsistency problem. At the same time, the data size is too small
to make tests. We rewrite some service functions and wrote a MongoDB & SQLDB data
seeder to reduce the data duplication and ensure referential integrity. Moreover, all the
data is stored by MongoDB in the original version, we also add MySQL database into the
simulation program which is closer to a real development environment. The framework

can run in MongoDb mode, SQL mode, or Mix mode. The service network can be seen
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in Figure 5.1 The modified code is on GitHub (39). The core service code line is 11028
SLOCs.

profile geo
A K

mgo

mgo

frontend mem

sql
recommendation | reservation
mgo
mem

R A 4 -

> search

Figure 5.1: Evaluation service network.

5.3 Failure Injection

Failure Injection Technique

The failure injection includes two separate parts, one is internal failure injection, the other

one is external failure injection. The failure injection methods are shown in Table

Main Outage Sub Outage Injector
Error Error Swallow By code modification
Error Unhanded By code modification
Hang Infinite loop By runtime injector
. Data Corruption By runtime injector
Software Bugs - - - —
Logic-Specific By runtime injector
Communication Corruption By runtime injector
Cross-Service Dependencies | Communication Interface Interface Overloaded | By strace system injector
Communication Interface Closed By strace system injector

Table 5.2: Failure and inject methods.

The internal failure injection, which means happens inside a service, includes simulating

error ignorant, simulating error swallow, simulating data corruption, simulating logic error,
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5. EXPERIMENTAL EVALUATION

and simulating infinite loop. These We use failure injection sub-updaters combine with
section [£.2] AST File Parser to inject related failure. In error swallow mode, the failure
injector removes return error assignment to the normal call statement, like shown in List.
.1l In error ignore mode, the failure injector changes the error variable name in the

assignment statement to underscore, like shown in List. [5.1]

Listing 5.1: Insert error unhanded/swallow error.

1 // Simulate time out

> var err error = varA.VunFunc()

+ // Error ignore mode
_ := varA.VunFunc()
7 // Error swallow mode

s varA.VunFunc ()

The data corruption and logic error use one failure injector, the injector corrupts the
object to a default value to simulate data corruption and changes the pointer to nil pointer
to simulate the logic error. Furthermore, this injector has data restore operation, which
changes variable data back to the correct value to avoid side effects in the continued
test. The infinite loop detector packs the loop exit condition into a function. In the
runtime, before the code enters the loop block, the packed function will define the continued

condition is always true or use the exit condition of the original code.

The external failure injection, which means happens between two services, includes sim-
ulating network congestion, network interruption. We use strace(40) to simulate function

timeout and network conjunction. The injected command is shown in Listing [5.2]

Listing 5.2: External error failure injection.

1 // Simulate time out
2> strace -f -e trace=network -e fault=network:when=1+20:error=ETIMEDOUT -p 1
-tt -o ./fault.log

4 // Simulate network conjunction
5 strace -f -e trace=network -e fault=network:when=1+20:error=EI0 -p 1 -tt -o
./fault.log
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5.3 Failure Injection

Failure Injection Plan

To evaluate the MFD failure detector, we need to have different experiment groups to
do a comparison. In our experiment, we have two basic influences we need to take into
consideration, service requests’ workload and code versions.

The First one is the workload send to our detector. We need to simulate a real situation
and think about a suitable workload in the evaluation. This is because the service cannot
work in an ideal world that users send requests one after another. Suitable workload
enables tester can check real request delay (for example some request can send to the
service very early, but due to network congestion in the request can be returned later
than other requests), real hardware overhead and how does service perform. In our plan,
the workload was to send 100 requests/second and last for 10 seconds to the evaluation
software. However, when we tried to conduct the test, we found wrk is not available to do
that due to some request response is time is long. We change the plan to 50 requests/second
and last for 20 seconds instead.

Then from our code version aspect, as we said in section [5.3] we need to simulate error
swallow and error unhandled situation. In the evaluation project we chose, all potential
errors are handled. Moreover, we cannot say we remove which error handler to simulate
error swallow/unhandled because it is not trustworthy. So we remove all error handlers,
or swallow all errors (except for the error controls work logic/flow) and do failure injection

on new versions of code. The test plan we can check from Table

Group Name => Original Version Detector Version Error Unhandled Version | Error Swallow Version
With Failure Detector No Yes Yes Yes
Internal Failure Injector No No Yes Yes
External Failure Injector | 10 Overload 10 Closed | 10 Overload 10 Closed | 10 Overload 10 Closed 10 Overload 10 Closed
Request Frequency 50 Req/s 50 Req/s 50 Req/s 50 Req/s
Work Load Last For 20s 20s 20s 20s
Group Repeat Time 50 50 50 50

Table 5.3: Real situation experiment plan.

In the simulation application, there are six different requests shows in Listing [5.3] We
will run them in experiments on the frequency, as the experiment plan table show. Each of
the requests will send to the simulation software 1000 times in 20 seconds, then repeats 50
times. So each request will run 50K times in the experiment. The relation between request
and service is shown in Table[5.4l To simulate the workload we use wrk2’s command which

is shown in Listing The command means the tool wrk2 runs a benchmark for 20
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5. EXPERIMENTAL EVALUATION

seconds, using 2 threads, keeping 10 HTTP connections open, and a constant throughput

of 50 requests per second.

Name Related Service
Request 1 | fnt_service, geo service, rsv_service, pfl _service, rte_service
Request 2 fnt _service, usr_ service
Request 3 fnt _service, rec_service, pfl _service, geo service
Request 4 fnt _service, rec_service, pfl _service, geo_service
Request 5 fnt _service, rec_service, pfl _service, geo service
Request 6 fnt service, rsv_service, usr_service

Table 5.4: Request and service map.

Listing 5.3: Example requests in evaluation

1 Request 1 :

2 "http://localhost:5000/hotels?inDate=2015-08-09&outDate=2015-08-10&1at=37.7867&lon=-122.4112&r
3 Request 2 :

4 "http://localhost:5000/user?username=userO&password=password0"

5 Request 3 :

6 "http://localhost:5000/recommendations?require=dis&lat=37.7867&lon=-122.4112"

7 Request 4 :

s "http://localhost:5000/recommendations?require=rate&lat=37.7867&lon=-122.4112"

9 Request 5 :
10 "http://localhost:5000/recommendations?require=price&lat=37.7867&lon=-122.4112"
11 Request 6 :
12 "http://localhost:5000/reservation?username=userO&password=passwordO&inDate=2015-04-09&outDate

Listing 5.4: Work load request command.

1 wrk -t2 -c10 -d20s -R50 --latency URL

For internal failure, the failure injector inserts one failure after the core injector is called
150 times, so the failure inject location and failure inject time are random in the evaluation.
For the external plan, the strace injects a failure on step 100.

The failure detection success standard is important to classify correct detection and
failure detection. The failure pass standard is the detector can detect the failure happen,
can figure out failure type accurately, can trace the failure, can log related context, the

service is not down or does not need to restart.
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5.4 Performance and Overhead

In this section, we conduct experiments on static file parse speed, throughout overhead,

memory & CPU extra usage. The summary is shown in Table [5.5]

Property Result

Parsing Speed 1.28 seconds

Vul ble Functi
uneré e Function 97% (Missing 2)

Detection Coverage
CPU Overhead 36.26%

Memory Overhead 6.24%

Request Waiting Overhead | 2.97% - 6.19%

Table 5.5: Performance and overhead overview.

Parsing Speed In our experiment there are 11028 SLOCs need to compile, and takes
1.28 seconds on average to generate detectors and injectors (Figure , which means
around 10K SLOCs/second. The parse time changes according to the platform hardware
abilities.

Vulnerable Function Detection The code parser used 5 special rules to detect vulner-
able functions, and time out for infinite loop and vulnerable operation is set for 0.2 seconds.
In the file processing stage, the MFD located 66 vulnerable operations, 10 for MySQL, 24
for MongoDb, 10 for Memory Database, 22 for internal service clients communication and
IO. In the examination, The MFD covers 97% venerable operation (missed two). This
may cause silent failure or partial failure during the runtime. The file parser encountered a
problem when the parser tries to pack vulnerable operations in the timeout block instead
of just setting the timeout attribute on the vulnerable operation. In the timeout imple-
mentation, the MFD needs to know the function’s return type. In the evaluation project,
there are four vulnerable operations that use assignment declaration, for example: row :=
s.MySQL.QueryRow(query). In this condition, we have to declare the return type first and
parse the project again.

CPU & Memory Overhead We measured CPU overhead for each services with 6
different requests, shows in Listing [5.3] The detailed result is shown in Figurd5.3|[5.4][5.5]
[.6] due to Request 3 - 5 uses same services and functions in action trace we combined
the results together. The Figurd5.3] shows Request 1 different services’ CPU usage and
memory consumption. The Figurd5.4] shows Request 2 related services’” CPU usage and

memory consumption. The Figurd5.5] shows Request 3 - 5 different services’” CPU usage
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Figure 5.2: File parsing speed.
*x azis’s unit is times.

*y axis’s unit is seconds.

and memory consumption. The Figurd5.6] shows Request 6 related services’ CPU usage
and memory consumption. Moreover, average summary is shown in Table

From the table we can see the consumption of CPU usage surge a lot, most of them con-
sume 30% more than original code, compares to (1))’s watchdog solution, which consumes
only around 5% more CPU usage our work still has much work to do. This is because
the MFD examines every line before and after statement execution, even a simple assign-
ment like var a = 1, but watchdog puts the most focus on vulnerable operations and code
blocks. Furthermore, fnt service CPU usage surges more than any other service, because
the service’s calculation and statements need to execute are the most. This means the
CPU usage raise percentage is linked to original service CPU usage. The more calculation
of original service, the more CPU usage the MFD consumes.

The MFD’s memory consumption raise is around 6% more, which is not high compares

to (1))’s watchdog around 4.2% more memory consumption rising. The fnt_service raises
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around 9% most among all services, no matter in which request. This is due to in imple-
mentation fnt_service stores all returned results from other services, and the MFD spends

more space to store data even some data is no longer needed.

Request Service Name | CPU Ori | CPU Det | Change | Mem Ori | Mem Det | Change
fnt_service 0.696 0.966 | 38.71% 9.86 10.22 | 3.65%
geo_service 0.163 0.218 | 33.64% 6.50 6.71 | 3.21%
pfl_service 0.731 0.975 | 33.53% 5.52 5.96 | 7.86%
Request 1 Isv_ service 0.274 0.349 | 27.41% 5.87 6.38 8.65%
rte_service 0.878 1.199 | 36.52% 6.38 6.48 | 1.54%
fnt_service 0.433 0.634 | 46.47% 8.22 9.02 | 9.83%
Request 2 usr_service 0.389 0.535 | 37.58% 7.42 8.33 | 12.27%
fnt _service 0.050 0.075 | 50.32% 7.01 7.33 | 4.63%
geo_service 0.252 0.341 | 34.95% 7.03 7.24 | 3.08%
Request 3 - 5 pfl service 0.258 0.343 | 32.98% 6.07 6.54 | 7.83%
rec_service 0.113 0.147 | 30.21% 6.89 7.50 | 8.75%
fnt service 0.310 0.443 | 42.89% 9.16 9.96 8.68%
usr_service 0.228 0.302 | 32.58% 8.25 851 | 3.14%
Request 6 - .
rsv_ service 0.316 0.415 | 31.21% 8.87 9.25 | 4.27%
Average 0.364 0.496 | 36.26% 7.36 7.82 | 6.24%

Table 5.6: All request’s CPU & memory usage.
*Ori represents for original code without detector.

*Det represents for code with detector
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Request Waiting Time More calculation leads to more waiting time for users. We need
to know how does the detector influence end-user. We summarized workload report into
Table [5.8] from wrk2’s result, and uses all data to draw the Figurd5.7 The request waiting
time shown in the table is the request’s 50-time group test’ average value. The Figurd5.7|
shows original code version and code with detectors version requests’ 50%, 75%, 100%’s
response time distribution and comparison. The blue part represents for original code
and the cyan part represents for code with detector. Compare to hardware overhead, the
waiting time increasing is more bearable. The minimum increase is 3% and the maximum
waiting time increase is 6%.

From the table, we can see if a request related service has more calculation, the more
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Figure 5.5: Request 3 - 5 recommendation request CPU & memory usage.

*1 azis’s unit is times.

*y axis’s unit for CPU Usage is Percentage divide by 100.

*y axis’s unit for Memory Usage is Bytes.
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5. EXPERIMENTAL EVALUATION

waiting time percentage it increases. Moreover, no matter in which group, the 100%’s

waiting for time’s increasing is more than other response percentages (50% and75%). This

means a stuck request needs to wait more time to get the resource to continue the calcu-

lation.

Table 5.7: Add caption

Request 1 | Request 2 | Request 3 -5 | Request 6
50% Ori 11.421s | 29.811ms 12.949s | 51.524ms
50% Det 11.867s 30.69ms 13.467s | 53.053ms
50% Raise 3.91% 2.95% 4.00% 2.97%
75% Ori 13.345s 33.77ms 13.312s | 53.469ms
75% Det 13.912s | 34.814ms 13.894s | 55.103ms
75% Raise 4.25% 3.09% 4.37% 3.06%
100% Ori 15.966s | 56.056ms 15.436s | 89.8121ms
100% Det 16.867s | 58.141ms 16.392s | 94.3449ms
100% Raise 5.64% 3.72% 6.19% 5.05%

Table 5.8: Network response time.
*Ori represents for original code without detector.

*Det represents for code with detector
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Figure 5.7: Network response result.
*x axis’s unit is second.

*y aris’s unit is percentage.

5.5 Runtime Failure Detection

In our experiment, there are three versions of source code, original code with own handler
version, error unhandled version, error swallow version. In each version we send 6 requests
50K times, the failure injection and failure detection detail is shown in Table.
due to Request 3 - 5 uses same services and functions in action trace we combined the
results together. In this section, we split the error detection results into two parts because
Infinite Loop and External failure are both related to the vulnerable operation and both

use timeout to detect failure.
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) ZeroValue NilPtr o
Group Service Precision
Inserted | Detected | Inserted | Detected

fnt_service 37 36 21 18 93.10%
geo _service 18 17 12 10 90.00%

Request 1 -
o pfl _service 37 35 27 24 92.19%

Original - .
rsv_service 26 24 35 30 88.52%
rte_service 27 26 23 10 91.20%
fnt_service 36 35 18 15 92.59%
geo_service 23 21 19 17 90.48%

Request 1 -
pfl service 32 32 11 9 95.35%

Error Unhandled -

rsv_ service 21 21 33 27 88.89%
rte_service 29 28 19 16 91.67%
fnt_service 35 34 17 12 88.46%
geo_service 19 19 13 8 84.38%

Request -
pfl_service 31 29 21 18 90.38%

Error Swallow - .
rsv_service 24 24 31 26 90.91%
rte_ service 27 26 28 24 90.91%
Request 2 fnt_service 97 93 24 20 93.39%
Original usr_service 83 80 91 84 94.25%
Request 2 fnt service 111 104 27 23 92.03%
Error Unhandled | usr_service 73 70 103 92 92.05%
Request 2 fnt_service 94 89 29 21 89.43%
Error Swallow usr_service 78 72 96 82 88.51%
| fnt_service 103 100 78 71 94.48%
Request 3 - 5 geo_service 85 79 89 76 89.08%
Original pfl service 103 98 111 101 92.99%
rec_service 79 73 82 72 90.06%
fnt_service 100 95 7 68 92.09%
Request 3 - 5 geo_service 87 81 83 67 87.06%
Error Unhandled | pfl _service 105 102 103 94 94.23%
rec_service 81 78 88 73 89.35%
fnt_service 101 96 78 64 89.39%
Request 3 - 5 geo _service 84 81 87 78 92.98%
Error Swallow pfl service 107 102 86 72 90.16%
rec_service 76 73 90 74 88.55%
fnt_service 76 71 82 75 92.41%

Request 6 - .
o usr_service 83 78 91 7 89.08%

Original - .
TSV _service 64 60 72 68 94.12%
fnt_service 77 75 85 75 92.59%

Request 6 - .
usr_service 87 85 66 54 90.85%

Error Unhandled - .
rsv_service 62 57 78 72 92.14%
fnt_service 82 79 87 74 90.53%

Request 6 - .
usr_service 84 81 64 53 90.54%

Error Swallow -

Isv_service 66 61 89 82 92.26%
Total 2750 2620 2464 2135 91.20%

Table 5.9: Zero value and nil pointer failure injection and detection.

68




5.5 Runtime Failure Detection

NilPtr & Zero Value Condition

Accuracy The nil pointer and zero value failure injection are to simulate data corrup-
tion, logic specific problem (one logic of code forgets to initial pointer property), and also
evaluate the failure detector under error unhandled, error swallow condition. From the
Table we can see our detector gets around 91% accuracy under this failure condition.
The unhandled version’s accuracy is almost the same as the original version with handlers.
This is because the detector use mechanism that forces the detector to handle ignored
failure. The swallow version is lower than others, which means there’s some silent failure
happened in the system. Furthermore, Nil Pointer’s failure detection accuracy is lower
than normal variable object data corruption.

So why does the failure not detected? We trace back by injectors logged to file, it
has three main reasons, corruption before return, error flag not clear and a silent failure
continue (this one will discuss in False Alarm Paragraph)

We use an example to explain corruption before return. For example in Listing [5.5
After all, code finished in funcB, the failure injector injects data corruption, and there’s
no detector between the injector and return statement. Then the result returns to funcA.
The detector after funcA only examines unhandled error or registers previous code line’s
variable, so in this condition, the detector regards this as a correct variable and updates

the variable’s data.

Listing 5.5: Work load request command.

1 func funcA(){
2 funcB(&in)

Detector.Register(in)

¢ func funcB(in *RtType) RtType{

~

8 Injector.InjectZeroValue(result)
9 return result

0}

Error flag not clear is also a common one that the detector ignores injected error. for
example in Listing the code request rows from database. Then scan the data to local
variables’ properties. If data in row corrupted, the detector will regard it as correct. At the

same time, there’s no error return to the scan function. Another situation is the developer
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G Servi External Inject Infinite Loop
roup ervice Insert | Detected | Precision | Insert | Detected | Precision
fnt_service 7 7 100%
geo_service 9 9 100%
Request 1 X
Original pfl_service 8 8 100%
rigina
& rsv_service 11 11 100% 12 11| 91.67%
rte_service 13 13 100%
fnt_service 16 16 100%
geo_service 6 6 100%
Request 1 -
pfl _service 9 9 100%
Error Unhandled )
rsv_service 12 12 100% 11 10 | 90.91%
rte_service 7 7 100%
fnt_service 14 14 100%
geo_service 8 8 100%
Request 1 -
pfl_service 4 4 100%
Error Swallow - .
rsv_service 17 17 100% 11 10 90.91%
rte_service 7 7 100%
Request 2 fnt_service 22 22 100%
Original usr_service 28 28 100%
Request 2 fnt_service 23 23 100%
Error Unhandled | usr_service 27 27 100%
Request 2 fnt_service 24 24 100%
Error Swallow usr_service 26 26 100%
fnt_service 63 63 100%
Request 3 - 5 geo_ service 71 71 100%
Original pfl_service 58 58 100%
rec_service 78 78 100% 13 13 100%
fnt_service 63 63 100%
Request 3 - 5 geo_service 72 72 100%
Error Unhandled | pfl service 67 67 100%
rec_service 68 68 100% 14 14 100%
fnt_service 69 69 100%
Request 3 - 5 geo_service 61 61 100%
Error Swallow | pfl_service 67 67 100% 13 13 100%
rec_service 63 63 100%
R ‘6 fnt_service 17 17 100%
(.e):qlm'es | usr_service 18 18 100%
riema rsv_service | 15 15| 100% | 14 13| 92.85%
fnt_service 13 13 100%
Request 6 - .
usr_service 16 16 100%
Error Unhandled - . :
rsv_service 21 21 100% 14 14 100%
R ‘6 fnt_service 19 19 100%
cauest usr_service 17 17 100% | 15 14| 93.33%
Error Swallow . ,
rsv_service 14 14 100%
Total 1248 1248 1 117 112 95.73%

Table 5.10: External network failure and infinite loop failure injection and detection.
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uses non-error types, such as string, to indicate a potential error in the called function and

the detector does not detect this situation.

Listing 5.6: Work load request command.

1 row := s.MySQL.QueryRow(fmt.Sprintf (sql.GetUsernamePasswordQuery,
user.Username))
> row.Scan(&resFound, &user.Username, &user.Password)

False Alarm From the Table we classified can know false alarm is around 4.5%.
The most common false alarm is false continue. A detector of a function detects a failure,
then raises failure and returns an empty variable. The return does not contain any error,
and an exception is recovered by the previous detector. The action goes back to the
caller function, and the caller function regards the false return as a correct return. Then
continue to execute the remaining lines until encounter a logic problem. If the failure does
not encounter any logic problem, it will become a silent failure and return a false response

to the end-user.

Request 1 | Request 2 | Request 3 - 5 | Request 6
False Alarm Ratio | 4.67% 4.12% 4.711% 4.81%

Table 5.11: False alarm ratio.

Time Efficiency and Failure Localization Accuracy The time efficiency summa-
rized in Table[5.12] We can know that the MFD’s failure detection time efficiency is almost
the same for the services operate on the same machine and docker configuration. However,
the service needs more system resources (Request 1) needs a little more time to detect

failure.

The Localization is around 78% because false continue happens in the system, it is due

to false continue and undetected property’s data corruption.
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Request 1 | Request 2 | Request 3 - 5 | Request 6
Average Response Time (ms) 26.02 21.72 23.01 21.23
Failure Total

, _ 680 830 1968 1277
Detect Time (Times)
Failure Localization
492 653 1504 961
Correct Time (Times)
Fail Localizati
aitre Locatization 72.35% | 78.67% 76.42% 75.25%

Correct Percentage

Table 5.12: Time efficiency and failure localization accuracy.

Infinite Loop Detector & Venerable Operation Detector

As shown in Table [5.10] these two detector are the most accurate detectors, both get
nearly 100% accuracy. However, they have their own limitation that need to improve.
False Alarm Or Long timeout Timeout is an efficient way to break long-running or
non-stop code blocks. However, how to set a suitable timeout may can use another paper
to fully discuss that. In our evaluation, we set timeout as 0.2 seconds. Due to the strict
timeout, many false alarm raises under current work load and timeout bound. The infinite

loop false alarm ratio is shown in Table [5.13]

Request 1 | Request 2 | Request 3 - 5 | Request 6
False Alarm Ratio | 22.91% N/A 12.43% 13.47%

Table 5.13: Infinite loop false alarm ratio.

Why the false alarm is so high? We trace back to the runtime context and found 3 main
reasons: some work needs long time calculation, some data cannot be got quickly from the
database due to resource conflict, some iteration data is big, and the program needs time
to process that. The code in Request 1 includes a for-loop in a for-loop. Besides, one loop
includes an external 1/O which slows down one loop circle’s speed and raises false alarms
frequently. Setting a small timeout can grade down system reliability, a long timeout will
influence the detector’s sensitivity.

Modification Manually Under circumstance venerable operation does not have time-
out property. The parser will pack the venerable operation in a timeout block, however, the
parser cannot get the external function’s return type to inject a timeout code block if the
programmer did not declare the return variable type in advance. Under this circumstance,

the tester has to insert the type manually after reading the code file.
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Side Effect

To avoid side effects, we duplicate the input variable before the failure detector’s
examination and the detector has its recovery for venerable operation. At the same time,
we have a recovery function for service to ensure service reliability. The basic idea of the
recover function is, the code tries to go to the next line. If there’s an error, the detector
will help the service step back to go to the previous "correct" configuration. During the
test, this idea works most time, but make one service locked twice a time.

The recovery function injects failure to the Request 6’s lock. For example in Listing [5.7]
The lock should unlock the lock of service. However, when the failure happens, the defer
s.lock.Unlock() unlocks the service lock, then the recovery function sets the lock’s status

to a deadlock.

Listing 5.7: Work load request command.

1 func (s *Server) MakeReservation(ctx context.Context, req

xreservation.Request) (*reservation.Result, error) {

N

defer Detector.Recover(s.lock)
4 defer s.lock.Unlock()
5 if err !'= nil {

6 return res, err

So in continuous development, we not only need to focus on vulnerable functions but

also "dangerous variables" to ensure they exit vulnerable correctly.
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Conclusions And Future Work

In this part, we will discuss what we have done, limitations, and future work. The software
architecture is becoming more loosely coupled and complex. This leads to tracing failure
and detecting a new emerging partial failure in Microservice Architecture Software (espe-
cially new failures in service communication). We first studied failure classification in cloud
systems by scholarly paper and new types of failure from microservice-related authoritative
websites (41). These all need a new mechanism to face new emerging difficulties. In our
work, we introduced a new tracing method to trace and locate failures both before and in
runtime. Moreover, we designed loosely coupled failure detectors and injectors to detect
failures in microservice architecture software. At the same time, the detector includes a

simple failure recovery mechanism to ensure the services’ availability.

6.1 Conclusion

RQ1:What is the state-of-the-art in failure detection techniques?

We introduced 5 state-of-art failure detection algorithms after we conducted a literature
survey. The first one is watch-dog, it inserts the detectors around vulnerable operations
to detects partial failure. The second one uses variable duplication or variable checksum
to detect data corruption. This methodology requires more memory space and calculation
ability than any other resources. The third one is static code analyzer, it can detect infinite
loop by analysis code without running. The fourth one (Machine Learning Detector) and
final one (Statistical Correlation Detector) are similar to each other. They use math models
or equations to predict failures. But the algorithm in Statistical Correlation Detector
introduces a method to trace actions in SOA or microservice architecture. It uses the

microservice’s communication interface to action information among services.
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RQ2: What properties of a microservice architecture make building a failure
detector difficult?

In our findings shows, tracing & locating actions in the microservice architecture, solv-
ing cross-cutting concerns, designing a distributed failure detector are the call challenge in
building a failure detector. Besides, new failures in microservice architecture’s communi-
cation network and components is also a challenge.

RQ@Q3: How to design a failure detector that addresses concerns specific to the
microservice architecture?

In our implementation, our ideas are: 1) For portability, inject the code of the runtime
failure detector into the original code. The detector’s algorithm should not include any
mechanism that is not available to implement in other coding language. 2) For scalability,
the failure detector calls the standard interface when the program is running and uses
different sub-detectors to check or verify failure. 3) For the high availability of microservice
architecture, once a failure is found, report the failure, and use a simple program recovery
mechanism to restore the program to the state before the failure occurred. 4) For error
traceability, use microservice architecture’s communication network to track the variable
context when the error occurs and get context before the error occurs.

So in our implementation, there are two parts, File Parser and Runtime Failure Detector.
They have a unified commonality that is high scalability, so they all use plug-in framework
to ensure that sub-parsers or sub-detectors can be quickly added or removed. In File
Parser, we use abstract tree parser to ensure that the code block and program structure of
the added detector are correct. In Runtime Failure Detector we include: data corruption
detector, partial failure detector, complete failure detector, infinite loop detector, failure
tracker and failure recovery component. They run together on the core detector framework,
and use share memory to communicate failure information.

RQ4: How to evaluate our failure detector on microservice architectures?

First of all, we need to select an evaluation platform. We have selected a microservice ar-
chitectures research platform from Cornell University and, in order to simulate the network
structure in the industry, we modified it and deployed it on a high-performance computer.

Secondly, we need to simulate failures on the evaluation platform. In order to simulate
internal failures, we use abstract tree file parser to insert the failure injectors’ code to sim-
ulate data corruption, partial failure, complete failure, infinite loop failure, logic problem,
etc. Moreover, modify or delete the part of the code that returns the error to simulate the
failure handling problem. In order to simulate the external environment to cause failure

in the program, we use the strace to inject errors.
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Finally, we conducted experimental evaluation. Take 6 different requests as six differ-
ent groups, and each request runs 10,000 times at a speed of 50Req/sec to measure the
overhead, accuracy and false accuracy rates respectively.

When we come to table about result. We get vulnerable operation coverage 97%,
CPU Overhead 36.26%, Memory consumption overhead 6.24%, Request Waiting Over-
head 2.97% - 6.19%. Moreover, We get around 90% failure detection accuracy, around
75% failure line-level failure localization accuracy, and 0.021 secs average failure detection

time.

6.2 Future Work

In our current work, it still has limitations and more work in the future. First, the static file
parser cannot detect all vulnerable operations when the MFD user is not familiar with the
whole project and familiar with the related programming language, due to the detection
pattern is input by the user. While in real life, a Microservice Architecture program
is written by multiple languages and groups of programmer with different programming
habits, all these influences’ failure detection accuracy.

Secondly, the detector in the microservice communication is one-way communication,
this makes the failure detect user does not know if the failure happens due to a network
problem, or related service status problem or logic problem. Also, missing communication
causes false alarms and false continue in the evaluation.

Thirdly, there are still has partial silent failures that cannot be found by the current
mechanism, for example, data corrupted when a statement executes or a function’s related
function failed, but the function did not receive error information due to related function
is recovered. Then the statement continues falsely. Finally, in our implementation, the
detector does failure detection on every code line, which consumes time and uses massive
hardware resources. A method to detect vulnerable operation and monitor dangerous

variable can make the system works more efficiently.
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