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Abstract

Cloud computing is a growing technology that gives both private and public organizations
the opportunity to operate and meet their goals more efficiently. A major benefit of
the cloud environments comes from the fact that it offers the necessary resources for
its customers on-demand without the need of maintaining a private infrastructure [16].
Moreover, the cloud providers implemented a new way of charging for the services they
offer, namely pay-per-use. In this sense, each customer only pays for the resources they
utilize and they do that only for the time they use those resources. One of the emerging
cloud computing paradigms that makes use of the pay-per-use schema is the serverless
computing. This paradigm enables its users to deploy small software applications into
the cloud, without the need of handling the operational logic. One of the most popular
serverless service is Function-as-a-Service (FaaS) where small code functions are run in
the cloud, while the necessary resources and execution environments are handled by the
cloud provider.

Serverless computing becomes more and more popular, as resources are made available
easily for its users. However, for this to be possible, cloud providers need to constantly
maintain and expand their infrastructure and soon it can reach a level where it becomes
unaffordable. In this sense, it is important that applications are developed to execute
efficiently. Moreover, as many decisions in every work field of today’s society are based on
information extracted from data, it is necessary that data processing applications continue
to be up-to-date, meeting the constantly changing needs and the continuously increasing
volumes of data.

In this thesis we design and implement several data-intensive applications using different
serverless architectures as well as different workload parallelization techniques. We use
resources provided by different cloud environments, DAS-6 cluster from Vrije Universiteit
Amsterdam and AWS cloud, and we create different workloads for testing our applications.
In the end, we analyse the performance of the applications in relation with the given
workload and compare their execution.
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1 Introduction

Cloud computing is the revolutionary technology that enables organizations to grow at
a rate that was never imagined before, as it removes the necessity of acquiring physical
hardware resources. In this sense, cloud environments bring computing as a utility, giving
the freedom for software solutions to access the necessary resources on demand [16]. By
doing so, software solutions are capable of scaling further at any given point in time.

Serverless computing is a cloud computing paradigm that enables users to deploy small
software applications into the cloud, without the need of handling the operational logic
[3]. As a result, developers can focus only on the application development, whereas the
cloud environment is responsible for resource provisioning and good performance of the
application. This is usually a challenging aspect of serverless computing, as owners of
the applications must rely on cloud provider’s design decisions, as well as their quality of
service monitoring, scaling, and fault tolerance properties [3]. However, serverless com-
puting enables a more fine grained cost control compared to traditional cloud computing.
Although in serverless computing there is no control over the resource provision, as it is all
managed by the cloud environment, the user only pays for the computation time required
for the application to complete.

Function-as-a-Service (FaaS) is one of the most popular serverless services available in
cloud environments, where users run small code functions in the cloud while resources,
lifecycle and event driven execution is managed by the cloud provider [3]. This provides
opportunities to run microservices on demand while paying only on the computation time
as well as new possibilities for parallel processing. A straightforward example of how cloud
functions operate can be given by a microservice responsible for image resizing. In this
sense, whenever an event containing image data is submitted, a new cloud function is
instantiated and processes the image, creating different resolutions of it. The owner of the
microservice is then billed for the exact time that the instance ran. Moreover, it enables
limitless and automatic scalability, together with fast processing of enormous payload.
This is due to the fact that for each submitted event, a new cloud function is instantiated
and cloud environments permit for limitless concurrent instances.

Technology is continuously evolving and software systems become more enhanced in our
every day lives. Because of this, an enormous volume of data is created daily in every
domain of activity. As an example, 12 terabytes of data is created everyday only from
tweets alone [9]. By analysing this data, improvements to many fields can be brought in,
including business, the scientific research, public administration, and so on [6]. However, as
the volume of data increases, current solutions get old and become inefficient at capturing,
curating, analysing and visualizing it. As also the cloud services grow in popularity, in this
thesis we plan on analysing the performance of two data-intensive applications, a sorting
application and a TPC-DS application, on serverless architectures. Moreover, we redesign
the sorting application using two different workload-parallelization techniques in order to
make resource usage more efficient, while also increasing the throughput. In the end, we
experiment with them and we analyse their execution.
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1.1 Context

Cloud computing changed the way resources and services are being billed and it did this by
introducing a new payment scheme, namely pay-per-use [16]. This ensures that the clients
only pay for the resources that they use, enabling software solutions for limitless scalability
together with removing the risk of under- or over-provisioning. Because cloud computing
is able to reduce the costs, by removing the need for organizations to continuously update
and maintain their in-house infrastructure, but also to increase the performance of their
systems, many companies have gained interest in running their applications in cloud.
Samsung, BMW, Siemens and Netflix are just a few of the biggest companies that make
use of the Amazon Web Services [1]. Moreover, a big part of them already spent millions
of dollars on those services [24]. Although cloud computing provides many services, lately
serverless computing has seen a rapid increase in popularity. AWS Lambda was first
released in 2014 and it is expected to be worth around 15$ billion by 2023 [20].

Technology is part of our everyday life and such, software applications gather enormous
amounts of data. In this sense, decisions based on the results of data analysis are being
taken in every field of activity [9]. We can observe the presence and potential of Big Data
in many fields like manufacturing and transportation, through usage of IoT sensors, e-
commerce, retail, banking and so on. Moreover, Big Data’s potential can also be observed
in scientific fields like medicine, biology, astronomy. This clearly shows that Big Data is our
opportunity to continue revolutionizing the world. To demonstrate the rate at which data
is growing, estimates show that the volume of business data worldwide doubles every 1.2
years [6]. Moreover, there is a lot of interest for Big Data also in the public administration
field. In 2012, Obama administration announced the Big Data research and development
initiative in order to investigate the problem that the government is facing [6].

As Big Data is a growing field, traditional technologies become old and inefficient to
serve nowadays needs. However, cloud technologies are continuously expanding, espe-
cially serverless services. In this sense, it is interesting to observe how data-intensive
applications behave when implementing different workload-parallelization techniques in
order to make processing more efficient and implementing serverless architectures. This
can be an opportunity for further scaling of data capturing and analysis tools.

1.2 Background

Although many definitions for cloud computing have emerged in the past years, the Na-
tional Institute of Standards and Technology (NIST) defines it as a model for enabling
convenient, on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly provisioned
and released with minimal management effort or service provider interaction [16]. The re-
sources and infrastructure are managed by the cloud provider and are available to the
customer on request. In this case, the customer does not require to self-maintain the
infrastructure while having the option to scale according to their needs. Moreover, the
cloud provider must ensure the availability and good functioning of the provided services
[4]. However, at its beginnings cloud providers offered Infrastructure-as-a-Service, which
implies that access to resources is made through the usage of virtual machines [4] [14].
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This leaves the problem of scaling on the developers shoulders, that most of the time
use over-provisioning to handle sudden changes in their systems’ load. Lately, serverless
computing has emerged. This gives the opportunity to better scale and exactly match the
needs of the system at any point in time, without the need of starting and stopping servers.
Moreover, it does not require extensive expertise from the developers to analyse in-depth
the resources that are necessary such that the system runs in good condition [5]. The most
common way to use serverless computing is through the usage of Function-as-a-Service.
In this case, software developers implement microservices in the form of code functions
that are made available on the cloud platforms. The microservices are then executed by
cloud functions during a limited period of time, with a minimal requirements specified.
Whenever requests or events come in, new cloud functions are started in order to resolve
them. At the end, the owner is billed for the exact amount of time the cloud function ran,
in relation with the resources that it used [10].

In the same time, data gets created at a rate that was never imagined before. Statistics
show that 90% of the data that exists in the world today, was created in the last two
years [9]. Because of this, conventional systems are surpassed, become outdated, and new
solutions must be found. In this sense, serverless technologies are a promising field that
can offer solutions for further expansion of the data-intensive applications.

1.3 Problem Statement

From the moment cloud computing made its first appearance, we have seen a rapid and
continuous evolution. Not only did it become more powerful in terms of resources that
it provides, but also in terms of technologies it offers in order to consume its resources.
Lately, serverless computing gained a lot of interest from both the academia and the
industry. This is due to the fact that it enables the user to have more fine-grained control
over their spendings on the necessary resources. Moreover, it enables applications to scale
much faster by deploying new cloud function instances whenever it is needed.

Data is an important aspect in our everyday life. We create data continuously and based
on analysis decisions and improvements are being made. However, the volume of data
grows at an unimaginable rates and traditional techniques of capturing and analysing it
easily become outdated. Serverless technologies opened up possibilities for designing new
solutions that can scale further, handling more data in a more efficient manner, while
keeping the costs manageable. Because of this, we are eager to explore new possibilities in
processing the data efficiently by designing and analysing the performance of data-intensive
applications following different serverless architectures.

Traditionally, applications perform tasks sequentially. However, in most of the cases,
these tasks do not require to use the entire computing power available and also do not
make use of the entire I/O capabilities. Although cloud environments offer resources on-
demand, we believe that this fact is going to reach an end. As the data centers grow,
cloud providers must create new ways of managing the continuously growing complexity
of the infrastructure, while being able to provide the agreed services. This will make it
harder and harder to expand the infrastructure available for the clients and can make it
soon not affordable [11]. For this reason, and in concordance with the vision of Iosup et.
al. [11], we believe that new ways of designing systems must be developed.In this work
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we design, implement and evaluate data intensive applications that try to process data in
a more efficient manner by implementing different ways of workload parallelization.

1.4 Research Questions

In order to respond to the problem stated above, we plan to explore different serverless
architectures and different workload-parallelization techniques for data-intensive applica-
tions. In this sense, we implement a sorting application and a TPC-DS application.
To easily track down the progress of this work and to ensure that the goal is achieved, we
define the following research question:

RQ1. What is the performance impact of sorting big data in cluster environ-
ments?

To answer this question we design and implement a sorting algorithm and we select
multiple parallelization techniques, such as job parallelization, where series of tasks
are being processed in parallel, as well as task parallelization, where each individual
task is scheduled for parallel processing. We implement each technique within a
different sorting application. Because we use multiple applications for answering
this question, we further split the question into three sub-questions.

RQ 1.1. What is the performance of data-intensive sorting application with
job parallelization in cluster environments?

This is the first implementation that intends to make resource usage more
efficient, while also increasing the throughput. To answer this question, we
design, implement and analyse the execution of this application.

RQ 1.2. What is the performance of data-intensive sorting application with
task parallelization in cluster environments?

This is the second implementation that intends to use resources more efficient,
while increasing the throughput. Different than the first implementation, in
this case the application is able to parallelize each individual task. In order to
answer this question, we analyse the execution times of each task using multiple
experiment configurations.

RQ 1.3. What workload-parallelization technique shows better performance
for the data-intensive sorting application in cluster environments?

To answer this question, we compare the execution times of the jobs and tasks
resulted from the experiments ran on the two implementations of the data-
intensive sorting application. Moreover, we compare what application is faster
in completing the given workload.

RQ2. What is the performance impact of sorting big data in serverless environ-
ments?

To answer this question we design two serverless data-intensive applications, a sorting
application and a TPC-DS application, and analyse the execution times of each cloud
function involved in their executions. The applications apply the job parallelization
technique that was used in the previous applications where a series of sequential
tasks are grouped into a job and each job is processed by a different cloud function.
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RQ3. What are the performance differences when comparing the execution of
the data-intensive serverless sorting application and the execution of the
data-intensive sorting applications implementing different workload par-
allelization techniques in cluster environments?

Finally, we look at the executions of the serverless implementation of the sorting
application with the executions of the data-intensive sorting applications that use
different workload parallelization techniques. We compare the execution of individ-
ual tasks as well as the execution of the applications and we draw conclusions.

1.5 Approach

To answer our research questions, we require to develop data-intensive applications that
implement serverless architectures, as well as different workload-parallelization techniques.
In this sense, in the first phase of the research we choose to implement a sorting algorithm,
using the MapReduce paradigm [7]. We choose the radix sorting algorithm, as it requires
a decent amount of computational power which is enough to measure the performance
of the application. Moreover, we choose MapReduce because it is a programming model
designed for distributed systems in order to process massive amounts of data. Because of
this, it enables the design of scalable algorithms [13].

Step 1. (Answering Research Question 1)

We select techniques to sort big data in cluster environments. We select two tech-
niques, job and task parallelization. In the first case, the sorting application performs
job-parallelization, schedules the workload in the form of jobs and each job consists
of several tasks executing sequentially. In the second case, the application does
task-parallelization and splits the jobs into several tasks. This enables performing
task parallelization, by assigning each task to a different process on the server.We
independently.

Step 1.1. (Answering Research Question 1.1)

This step consists of running multiple experiments, following different configu-
rations, using the worker sorting application to schedule jobs and execute them
in parallel using multiple processes. Because a job consists of multiple tasks
that are executed sequentially, we analyse the execution times of each task of
a job, as well as the execution times of the jobs themselves.

Step 1.2. (Answering Research Question 1.2)

Similarly, the second step consists of running multiple experiments, following
different configurations. However, this time, we use the sorting application
implementing task parallelization and we analyse the execution times of each
task, as well as the execution of the entire application.

Step 1.3. (Answering Research Question 1.3)

To finally answer Question 1, we compare the execution times of the jobs and
tasks resulted from the experiments ran on the two implementations of the
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worker sorting application. Moreover, we compare what application is more
efficient in completing the given workload.

The next phase of the research consists of implementing two serverless applications that
can be configured to run in the most popular cloud environments, using different work-
loads. The first application implements the same sorting algorithm that follows the
MapReduce model as the worker sorting applications mentioned above. The workload
is divided into equal jobs, each job being assigned to a different could function. The sec-
ond application implements TPC-DS [17] - a decision support benchmark for performance
measurements. The TPC-DS application implements different complex SQL queries on a
given database. The application splits the SQL query into several smaller queries from
which it generates workload in the form of jobs, each job being assigned to a different
cloud function.

• Step 2 (Answering Research Question 2)

To answer this question, we run and compare multiple experiments with different
configurations on the two applications mentioned above. For each application, we
then analyse the execution times of each cloud function that is used. As each cloud
function executes one job and each job is composed of several tasks that are sequen-
tially executed, we analyse the execution times of each task. Moreover, we analyse
whether there is any variation in the execution times of the tasks and cloud functions
over multiple experiment runs.

Finally, we compare the execution of the worker sorting applications using IaaS with the
execution of the serverless sorting application using FaaS.

• Step 3 (Answering Research Question 3)

Finally, we look at the executions of the serverless implementation of the sorting
application with the executions of the worker sorting applications. We compare the
execution of individual tasks as well as the execution of the applications and we draw
conclusions. The purpose of this phase is to highlight the differences between execu-
tions of the same sorting algorithm developed in two forms, a serverless application
and a worker application.

1.6 Main Contribution

This research provides Technical and Experimental contributions. Next we map them
to the research question presented in Section 1.4 as follows:

• (Technical, Research Question 1 and Research Question 2) Design and im-
plement data-intensive applications implementing diverse workload-parallelization
techniques in cluster environments.

• (Experimental, Research Question 1 and Research Question 1) Analyse per-
formance of each data intensive application implementing diverse workload-parallelization
techniques in cluster environments.
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• (Technical, Research Question 1) Compare the results of the executions of the
data-intensive applications implementing diverse workload-parallelization techniques
in cluster environments.

• (Technical, Research Question 2) Design and implement data-intensive server-
less applications that make use of cloud functions. Compare results of the execution
of the applications.

• (Experimental, Research Question 2) Analyse the execution of the data-intensive
serverless applications that make use of cloud functions.

• (Experimental, Research Question 3) Compare the execution of the data-
intensive applications implementing diverse workload-parallelization techniques with
the execution of the serverless applications using FaaS.

1.7 Anti-Fraud Measures

All the applications used in this research were developed by the main author of the the-
sis with the assistance of the daily supervisor. All the applications are open-source and
publicly available. The worker sorting applications are available in the owner’s GitHub
repository1. Similarly, the serverless sorting application is available in the owner’s GitHub
repository2, as well as the TPC-DS application3. The worker sorting applications and the
serverless sorting application were developed from scratch, while the TPC-DS applica-
tion represents an updated version of the implementation available in the public GitHub
repository4.

1.8 Related work

Since cloud technologies have emerged, work has been conducted in order to benchmark the
serverless cloud performance, especially the FaaS services. Similar to our work, previous
work focused on benchmarking different aspects of the cloud platforms, such as hardware
resources, startup latency, concurrency and elasticity and event trigger latency. However,
as serverless computing evolves results of benchmarks become outdated.
Iosup et. al. [20] present their vision regarding a comprehensive benchmark for the
serverless computing. They motivate that a very important aspect of benchmarking is
reproducibility, since the cloud evolves and benchmark results get outdated. Their bench-
mark, similar to our study, identifies areas of the serverless environments that must be
measured, such as function runtime, event propagation and software flow. However, more
than this, they identify that the cost of running software in the serverless environments
must be also measured, since it is an important aspect when deciding on the necessary re-
sources and performance required for each software running in the cloud. To demonstrate
the cost benefits of serverless environments, Villamizar et. al. [22] creates a performance
and cost comparison between a software with a monolithic architecture, a software with a
microservice architecture that is operated by the cloud customer and a a software with a

1https://github.com/bgdbgd1/sorting-with-threads
2https://github.com/bgdbgd1/lithops-radix-sort
3https://github.com/bgdbgd1/tpcds-lithops-scripts
4https://github.com/ooq/tpcds-pywren-scripts
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microservice architecture operated by the cloud provider. They present that microservice
architectures can help reduce the cost of the infrastructure. Moreover, they demonstrate
that using services specifically designed to be used in relation with microservices reduce
infrastructure costs by up to 70%.
Other related work compare the performance of the serverless environments offered by dif-
ferent cloud providers. Figiela et. al. [8] test several hypotheses on multiple closed-source
clouds like AWS, Google, Azure and IBM. Similar to us, they observe that application
server instances are reused between calls, therefore only the first cloud functions infer cold
starts. However, different than us, they test cloud performance such as CPU performance
and network throughput, in relation with the function size. Wang et. al. [23] also fo-
cus on CPU and network performance in relation with function size, but also with the
number of concurrent functions used, as they perform the largest measurement study to
date, using 50 000 cloud functions. Moreover, they observe cold starts of cloud functions
in different cloud environments. An in-depth analysis on the scalability of the serverless
environments is presented by McGrapth et. al. [15]. They provide measurements on cold
and warm starts and analyse both container allocation and container removal. Lee et.
al. [12] analyse performance of serverless environments from multiple providers in relation
with the number of concurrent functions. In this sense, they use different workloads that
are either CPU, disk or network intensive. Similar to us, they compare the execution of
the workloads in serverless environments with the execution of the same workloads using
virtual machines. In the end, they conclude that serverless execution is usually cost ef-
fective against sequential execution of workload on virtual machines. A literature study
performed by Scheuner et. al. [19] documents 112 studies, both academic and grey lit-
erature, that evaluate serverless environments, specifically Function-as-a-Service. They
document the trends of the publications in performance evaluation, what are the most
common platforms benchmarked, what kind of experiments are commonly used and what
services are used in the experiments.

1.9 Reading Guidelines

The remainder of this thesis is structured as follows: Chapter 2 presents the require-
ments of the applications used in research together with their design and implementation.
Chapter 3 presents the experimental goals, as well as the design and configurations of
the experiments. Chapter 4 presents the analysis performed on the execution of the two
worker sorting applications using different workload parallelization techniques. Moreover,
we create a comparison between the performance of the two worker sorting applications.
Chapter 5 presents the analysis on the execution of the serverless applications using FaaS.
In the end, we compare the execution of the worker sorting applications with the execution
of the serverless applications. Chapter 6 presents the discussion, conclusion and future
work.
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2 Big Data Application Design and Implementation for Clus-
ter and Serverless Execution

This chapter describes the design and implementation of all data-intensive applications
that were used in the research and contributes and contributes to answering RQ 1 and
RQ 2. In order to set the goals of these applications, we first present the functional
and non-functional requirements in section 2.1. Following the requirements, two different
applications were implemented, a sorting application and a TPC-DS application. However,
the sorting application was developed following 3 different approaches and resulted in 3
different applications, a serverless application and 2 different worker applications. Section
2.2 presents the design of the serverless sorting application and worker sorting applications
and Section 2.3 presents the design of the TPC-DS application.

2.1 Requirements

2.1.1 Functional Requirements

FR 1. Perform I/O operations and report on their execution time

This is a basic requirement for analysing the performance of the data-intensive appli-
cations. The application must be able to read and write data from different storage
locations.

FR 2. Perform computational tasks and report on their execution time

We require to measure the performance of the computational tasks performed by the
data-intensive applications. The application must perform different computational
tasks.

FR 3. Report on the execution time of the application

The application must be able to report on the execution time of the entire application
and not only of individual tasks.

FR 4. Be deployable on the most popular cloud platforms

The application must be able to run on the most popular cloud platforms such as
AWS, Microsoft Azure, Google Cloud, IBM. This opens up the possibility to create
comparisons between the performance of different cloud platforms.

FR 5. Generate experiment workloads

The application must be able to generate the workload that must be processed. The
workload must be configurable.

FR 6. Generate and process experiment logs and create meaningful graphs

In order to understand the performance of applications, they must be able to generate
and process logs, creating meaningful graphs regarding the execution of different
tasks and of the application.
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2.1.2 Non-functional requirements

NFR 1. Usability, Simplicity: Support of experiment configurations and specify them in
1 configuration file

The applications must be able to use multiple experiment configurations. In this way,
we are able to test the performance of the cloud platforms under different workloads.
Moreover, all experiment configurations must be present in 1 configuration file.

NFR 2. Usability, Simplicity: Support of deployment configurations and specify them in
1 configuration file

The application must be able to support different deployment configurations such
as usage of different cloud platforms, different storage systems and locations and
different number of resources allocated. Moreover, all deployment configurations
must be present within 1 file for better management.

NFR 3. Extensibility: Easy to expand the experiment and deployment configurations

In case new configurations are required, it must be easy for one to expand on the
experiment and deployment configurations.

NFR 4. Scalability: Easy to scale

The applications must be able to scale in order to process workload of different sizes.

2.2 Sorting Application Following Multiple Workload Parallelization Tech-
niques for Cluster and Serverless Environments: Design and Imple-
mentation

The first application is developed in python3 by the main author of the thesis and with the
help of the daily supervisor. The application implements the sorting algorithm following
the MapReduce framework. We chose the radix sorting algorithm, as it requires a decent
amount of computational power which is enough to measure the performance of the appli-
cation, while it requires to process all the data. Moreover, we chose MapReduce because
is a widely use framework for distributed data-intensive applications [7]. The reason for
choosing MapReduce is that it was also proven suitable for benchmarking performance of
cloud platforms [21]. In this way, the application is able to process large amounts of data
in a parallel, in a distributed fashion. The application interacts with a storage system in
order to read the raw data, as well as to write the processed data. The data is stored
in files and these files are generated using the publicly available generator on the Ordinal
platform5. The application implements the generator, so the data can be made easily
available (FR 5). To ensure a high level of complexity and randomness, the data that is
present in each file consists of a series of characters, each character taking one of the 256
values that can be found in the extended ASCII table [2]. Important to mention is that
the data is generated uniformly, meaning that each of the 256 characters is present at least
once on each position in the group. The data is formatted in groups of 100 characters,
each group being further referred to as a data entity. Moreover, each data entity is defined
as a key-value pair. The key is represented by the first 10 characters and the value by the

5http://www.ordinal.com/gensort.html
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remaining 90. The reason why the data entities are sectioned in this manner is because
the key is used for sorting and the value is needed to add weight on the I/O operations.

The application follows the MapReduce model, therefore, it executes in two stages - a map
stage and a reduce stage. To be more precise on the scope of each stage, the map stage
was named as being the Determine Categories Stage and the reduce stage was named
as being the Sort Categories Stage. Each stage consists of a number of jobs that are
scheduled in the application, each job containing 3 tasks used for reading, processing and
respectively, writing the data. Additionally, the application runs following configuration
parameters. The configuration defines the number of files containing data to be sorted,
as well as how the application must categorize the data. Each stage is further detailed
below.

Stage 1. Determine Categories Stage

The first step in this stage is to schedule a job for each file that needs to be processed
by the application. The first task of the job then reads the data from one of the
files. After the data is read, the second task sorts all data entities by the first two
characters of their keys. Following this action, each data entity is assigned to a
certain category, following a rule defined by the total number of categories specified
in the configuration. An important aspect is that this number should always be a
multiple of 256. The reason for this is that a category can be defined by all data
entities that start with a certain character, or by a portion of them.

example: In the case of 256 categories, each one contains all data entities
starting with a certain character, while in the case of 512 categories, each
contains half of all data entities starting with a certain character.

The last task writes the sorted data to the storage system. In the end, the job
returns the positions of first and last data entities within each category. A collection
of data entities that belong to a certain category is referred to as a partition.

The entire process described above is visually described in Figure 1.

Stage 2. Sort Categories Stage

For this stage of the application, the number of jobs that are scheduled equals the
number of categories defined in the configuration. The first task of each job reads
all partitions that belong to a certain category, from all the files resulted from the
previous stage. The second task assembles in the designated category all data entities
from the partitions read by the first task. The data entities are then sorted by their
keys. In the end, the third task writes the sorted data back to the storage system.

In the same manner, Figure 2 presents an overview of the processes of this stage.

Three different design approaches that were chosen for the sorting application. The first
one follows a serverless architecture, where each job is handled by a cloud function. The
other two approaches design the sorting algorithm as worker applications. The worker
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Figure 1: Overview of the Determine Categories Stage (stage 1).
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Figure 2: Overview of the Sort Categories Stage (stage 2).

applications are hosted on multiple processing nodes. In the first case, the worker appli-
cation uses parallel processing in order to process multiple jobs simultaneously, while in
the second case, the worker application first divides the jobs into multiple tasks and then
schedules them for parallel processing.

2.2.1 Workload Parallelization Techniques for Serverless Environments
- Serverless Sorting Application

The serverless sorting application is developed in python3 by the author of the thesis and
with the help of the daily supervisor. It makes use of AWS Lambda cloud functions in
order to process the workload. Moreover, the application also makes use of the Lithops
python library [18] in order to easily manage the AWS Lambda function instances. Lithops
library also enables for easy deployment of the application on other cloud platforms such
as Microsoft Azure, Google Cloud and IBM Cloud (FR 4). Lithops makes the application
cloud-agnostic, as it only requires a configuration file that specifies the necessary cloud
endpoints where the application should be deployed, without any cloud platform specific
settings. The cloud function instances are orchestrated by a client handler that assigns
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the work. Figure 3 represents the design architecture of this application. The code-base
of the application is stored in the GitHub repository6.
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Figure 3: Architecture design of the sorting application using AWS Lambda functions.

During the Determine Categories Stage, to have a uniform workload, the client handler
defines as many jobs as the number of initial files that contain the data to be sorted.
Consequently, the client handler starts up as many cloud function instances as the jobs
previously defined. Each function then reads one of the files from the storage system.
Next, it sorts the data entities by the first two characters, determines the categories based
on the application configuration and places the entities in the categories they belong to.
Finally, the cloud function writes the sorted data entities back to the storage system and
returns the first and last positions of each category to the client handler of the application.

6https://github.com/bgdbgd1/lithops-radix-sort
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The client handler then gathers the data from all AWS Lambda function instances that
were requested for the first stage and starts the Sort Categories Stage.

For the Sort Categories Stage, again for a uniform workload, the client handler triggers
another batch of functions, each being responsible for sorting a single category. Each
function is then required to retrieve all partitions of the given category from each file
generated during the Determine Categories Stage, sorts the data and saves it to a file
in the storage system. When completed, each cloud function notifies the client handler
about the finished job without returning any data, as the algorithm is ended and no further
processing is required.

2.2.2 Workload Parallelization Techniques for Cluster Environments -
Worker Sorting Application with Job Parallelization

The worker sorting application with job parallelization follows a similar architecture as
the serverless sorting application. The aim of this approach is to implement the sorting al-
gorithm within a worker application that can be deployed on any computing node without
requiring a serverless infrastructure. As the worker application is deployed on a computing
node that has more resources than a cloud function does, we decided to enable the worker
application to process the workload in parallel, instead of doing it sequentially. This de-
cision was also taken because of the limited amount of computing nodes available. The
worker application is developed in python3 by the author of the thesis and with the help of
the daily supervisor. The worker sorting application uses the Flask library to implement
REST APIs in order to trigger the stages of the sorting algorithm. We use Flask because
it is a lightweight library that fits the purpose of this application. Multiple instances of
the application are deployed on multiple computing nodes on the DAS-6 cluster of the
Vrije Universiteit. The code-base of these applications is stored in a GitHub repository7.

During the Determine Categories Stage, in order to create uniform workload, the client
handler defines a number of jobs equal to the number of data files. The jobs are then
scheduled on the worker application, which is able to process them in parallel. This is
done by assigning each job to a separate process on the computing node where the worker
application is deployed. If there are more jobs than the worker is able to parallelize, they
are placed in a waiting queue and are picked up one by one, once a running job finishes.
At this stage each job consists of three tasks that are executed sequentially. The first
task reads the data entities from the file. The second task sorts the data entities by the
first two characters of their keys and determines the categories to which each data entity
belongs to based on the application configuration. The third task then writes the sorted
data into the storage system. In the end, each job returns the first and last positions of
each category it determined. When the queue is empty and all the jobs are completed,
the worker application reports information about the categories determined by all the jobs
that it processed back to the client handler.

During the Sort Categories Stage, in order to create uniform workload, the client handler
defines a number of jobs equal to the number of categories that were defined in the ex-
periment configuration. The jobs are again scheduled on the worker application, which,

7https://github.com/bgdbgd1/sorting-with-threads
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Figure 4: Overview of the worker sorting application with job pallelization.

in turn, process them in parallel. Similar to the previous stage, each job is assigned to
a separate process on the computing node on which the worker application is hosted. If
there are more jobs than the worker can parallelize, they are also placed in a waiting
queue and are started one by one, whenever a running job completes. The jobs that are
processed at this stage also consist of three tasks. First task must read all data partitions
belonging to the category given to the job. The second task reassembles the category from
the partitions that were read by the previous task and sorts it. The third task writes the
sorted data of the category on the storage system. When the scheduling queue is empty
and all jobs are completed, the worker application notifies the client handler about it.
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2.2.3 Workload Parallelization Techniques for Cluster Environments -
Worker Sorting Application with Task Parallelization
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Figure 5: Overview of the worker sorting application with task parallelization.

The worker sorting application with task parallelization represents an updated version of
the worker sorting application with job parallelization. This approach aims at improving
the processing time of each stage of the sorting application by using the resources of the
computing node more efficiently. In this sense, this approach proposes that instead of
executing multiple jobs simultaneously, they must be first divided into tasks and only
then the tasks to be processed in parallel.

During the Determine Categories Stage, in order to create uniform workload for each of
the worker sorting application instance, the client handler defines a number of jobs equal
to the number of files containing data to be sorted. The jobs are then sent to the worker
application. Each job consists of three different tasks, a reading task that reads the data
entities from the file, a sort and determine categories task that sorts the data entities
based on the first two characters of their keys and determines the categories to which each
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data entity belongs to, and a writing task that uploads the sorted data entities back to
the storage system. To achieve task parallelization, the worker application defines three
dedicated pools of processes, one for each type of task. At first, the worker application
only schedules the reading tasks on the reading pool of processes. As these tasks begin to
complete, they generate sort and determine categories tasks that are scheduled on their
dedicated pool. Consequently, whenever one of these tasks finishes, it generates writing
tasks. In the end, after all tasks are executed, the worker application returns information
about the categories determined during this stage.

During the Sort Categories Stage, in order to create uniform workload for each of the
worker sorting application instance, the client handler defines a number of jobs equal to
the number of categories defined in the application configuration and they are sent to
the worker application. Each job consists of a number of read partition task equal to the
number of partitions that each category has and two more tasks, a sort category task and
a write category task. Each read partition task reads its partition from the files on the
storage system and saves the data in a temporary storage on disk. This decision was taken
in order to avoid the usage of shared memory and locking mechanisms such that the data is
safely accessible by the tasks requiring it. For each of the three types of tasks the worker
application defines dedicated pools of processes. At start, the worker application only
schedules read partition tasks. The main process of the worker application watches the
temporary disk storage, creates a sort category task whenever all partitions of a category
are present and schedules it on the dedicated pool. Consequently, as a sort category task
is finished, a write category task is scheduled. When all tasks are complete, the stage
finishes. The worker application returns to the client handler, informing it about the end
of the stage.

2.3 TPC-DS Query Application: Design and Implementation

TPC-DS is a decision support benchmark that models several generally applicable aspects
of a decision support system, including queries and data maintenance. The benchmark
provides a representative evaluation of performance as a general purpose decision support
system [17].

The application consists of a number of python scripts that implement different TPC-DS
queries. All scripts implement the Lithops library and use AWS Lambda cloud functions
in order to resolve the queries. The queries are ran on data generated by the TPC-DS data
generator. The application implements the generator, so the data can be easily available
(FR 5). The data represents a fictive database composed of multiple tables. The data of
each table is saved in CSV format on the cloud storage. Because some tables can be very
large, sometimes they are split in multiple partitions. The code-base of the application is
available in a GitHub repository 8.

The scripts were not developed from scratch, but an older implementation is available in
the GitHub repository9 was reused. However, a number of improvements were added:

• Migrated from Pywren library to Lithops library. Pywren is a python library very
similar to Lithops that facilitates the development of serverless applications and

8https://github.com/bgdbgd1/tpcds-lithops-scripts
9https://github.com/ooq/tpcds-pywren-scripts

21



deployment of AWS Lambda cloud functions. However, Lithops is platform agnostic
which makes it easy to deploy the same application on a different cloud platforms
such as Microsoft Azure, Google Cloud and IBM Cloud (FR 4).

• Updated outdated code and libraries.

• Created the table schema. The table schema is missing from the original repository,
therefore it had to be recreated using the current TPC-DS documentation.

The application follows a serverless architecture in order to resolve queries provided by
the TPC-DS benchmark. As the queries are complex and they involve a big number of
tables, the application runs in several stages, each stage representing a part of the original
query (e.g. a subquery or a join between multiple tables). In-between each stage, a client
handler orchestrates the workload and starts up Lambda cloud functions. Depending on
the number of partitions of tables that are used during a certain stage, a various number
of Lambda cloud functions are deployed. All four TPC-DS queries can be found in the
Appendix A together with an extensive description about every stage that the application
implements in order to resolve the queries.
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3 Experiment Design and Configuration

This chapter presents the experiment design and configuration for the data-intensive ap-
plications used in this research and contributes to answering RQ 1 and RQ 2. In order to
test the performance of these applications we design several experiments that impose dif-
ferent workloads. The applications are deployed on different set of resources. The worker
sorting applications are deployed on the DAS-6 cluster, while the serverless applications
implementing cloud functions are deployed on the AWS cloud. Moreover, the worker
sorting applications implement different workload-parallelization techniques and they are
deployed on DAS-6. In-depth details about the resources used by our applications in both
AWS cloud and DAS-6 are presented in Section 3.3.
In order to have meaningful experiments and results, we first draw the experimental goals
in Section 3.1. Following up, we present the application configurations used in running
our experiments. The configurations are divided on an application basis in Section 3.2.
The results of our analysis based on the execution of experiments on the data-intensive
applications are presented in Chapter 4 and Chapter 5.

3.1 Experimental Goals

The main goal of this research is to analyse the performance of data-intensive ap-
plication on serverless architectures. To reach this goal, we implement several data-
intensive applications following the Application Design and Implementation presented in
Chapter 2. The experiments plan to test different parts of the applications and they have
the following goals:

1. Goal 1: Analyse the performance of I/O operations in relation with the
size of the data that must be processed as well as with the number of
concurrent I/O operations for all applications.

For this goal, we are interested to observe whether the number of concurrent I/O
operations and the size of the data to be processed impact their performance.

2. Goal 2: Analyse the performance of processing tasks in relation with
size of the data that is being processed as well as with the number of
concurrent processes.

For this goal, we want to observe whether the size of the data that is being processed
and the number of concurrent processes affect the performance of these tasks.

3. Goal 3: Analyse the cold start times of the serverless applications using
cloud functions.

We are interested in analysing the cold start times required by the cloud functions
that get started while running our experiments. For this, we execute multiple suc-
cessive runs of the same experiment and we analyse when cold starts happen and
how much time they require.

4. Goal 4: Compare the execution of the worker sorting applications with
the execution of the serverless sorting applications.
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For this goal we compare the execution of the worker sorting applications with the
execution of the serverless sorting applications. For a good comparison, we execute
experiments following the same configurations.

3.2 Application Configuration

In this section we detail on the processes that we monitor for each data intensive applica-
tion used in this research. Moreover, we present the configurations used throughout our
experiments.

3.2.1 Serverless Sorting Application

The serverless sorting application is deployed on the Amazon Web Services cloud and
makes use of the AWS Lambda cloud functions to process the workload. The data that is
used by the application is stored in Amazon Simple Storage System (S3). The use of the
cloud functions imply an extra step in each of the two stages of the application, as these
functions require to be deployed before they can start the execution. For a good overview
of the measurements that we perform, we detail on all the processes involved in each stage
of the serverless sorting application. The results of the analysis based on the application
configuration described below are presented in Chapter 5.

3.2.1.1 Determine Categories Stage

• Init stage

This is the stage where the execution environment for the cloud functions gets cre-
ated. The cloud environment provisions the application with all the necessary re-
sources, extensions and code that the function must execute. The time required for
this stage to complete is automatically reported by Lambda in the CloudWatch logs.
Measuring the time required for this stage will help us determine the cold start of
the cloud functions.

• Invoke stage

This stage measures the time it takes for each AWS Lambda function to run to
completion. As defined in the previous chapter, during the Determine Categories
Stage each cloud function is assigned one job. In turn, each job consists of three
tasks. In order to get a good overview of the execution times of these cloud functions,
we measure both the completion time of every job, as well as every task.

– Read Initial Data Task

This task is the first one that runs in a job and it is required to read the data
entities from the files stored in the S3 cloud storage.

– Sort and Determine Categories Task

This task is responsible for sorting the data entities by the first two characters
of their keys and determines the categories to which each data entity belongs
to.
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– Writing task

After the sorting is done, this task writes the data entities back to the AWS
S3 storage system, a location accessible to the cloud functions responsible to
execute the Sort Categories Stage.

3.2.1.2 Sort Categories Stage

• Init stage

Similarly to the Init stage from the Determine Categories Stage, this is where the
execution environment for the AWS Lambda cloud functions gets created.

• Invoke stage

This is the stage at which the actual function execution takes place. As defined
in the previous chapter, during the Sort Categories Stage each cloud function must
execute one job, with the difference that this time each job consists of a number of
Read Partitions Tasks, a Sort Category Task and a Write Category Task.

– Read Partition Task

Each read partition task is responsible for reading a partition belonging to a
certain category, assigned per job, from one file generated in the previous stage.
At this stage, we analyse the time required to read each partition, as well as
the total time required for reading all partitions of a category.

– Sort Category Task

The purpose of this task is to reassemble the category using the partitions read
by the previous reading tasks. Moreover, the task sorts the data entities from
the category, based on their entire keys.

– Write Category Task

At this point, the data entities are fully sorted and the sole purpose of this task
is to write them to files on the AWS S3 storage.

To be able to analyse the performance of the serverless sorting application in the AWS
cloud environment, multiple application configurations are used. An overview of the con-
figurations can be observed in Table 1. For each application configuration 1 experiment
with 10 experiment runs are being executed. The size of each input file will not go higher
than 1GB, as it increases the reading, processing and writing times and requires that more
memory is assigned to each AWS Lambda cloud function. Consequently, higher costs for
the experiment runs are to be expected.

3.2.2 Worker Sorting Applications with Diverse Workload Parallelization
Techniques

The worker sorting applications are deployed on the computing nodes of the DAS-6 cluster
owned by Vrije Universiteit. Multiple instances of the worker applications are deployed
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Total data size
Number of
data files

Size of each
data file (MB)

Number of
categories defined

100 1000 100 256

100 1000 100 512

100 500 200 256

100 500 200 512

100 100 1000 256

100 100 1000 512

500 1000 500 256

500 1000 500 512

500 500 1000 256

500 500 1000 512

1000 1000 1000 256

1000 1000 1000 512

Table 1: Application configuration of the Serverless Sorting Application.

on the cluster, each instance being deployed on a separate computing node. The worker
sorting applications are able to parallelize their work, assigning jobs or tasks to separate
processes on the node. Moreover, the data used by the worker applications is stored on
another node present on the DAS-6 cloud. The data is made accessible through MinIO, a
High Performance Object Storage compatible with Amazon S3 storage.

The worker sorting applications implement the sorting algorithm in two stages, the Deter-
mine Categories Stage and the Sort Categories Stage. To analyse the performance of the
worker applications we look at the execution times of the jobs running during each stage,
as well as the execution times of each individual task contained in a job. The results of the
analysis based on the application configuration described below are presented in Chapter
4.

3.2.2.1 Determine Categories Stage

• Read initial data task

This is the first task that runs during this stage. The task reads the data entities
from the data files saved on the storage system.

• Sort and determine categories task

This task must sort the data that was read by the previous task.
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• Writing task

After the data entities are sorted, this tasks writes the data entities back to the
storage.

3.2.2.2 Sort Categories Stage

• Read partition task

Each read partition task is responsible for reading a partition belonging to a certain
category, assigned per job, from one file generated in the previous stage.

• Sort category task

The purpose of this task is to reassemble the category using the partitions read
by the previous reading tasks. Moreover, the task sorts the data entities from the
category, based on their entire keys.

• Write category task

This task is responsible for writing the sorted category back to the storage.

To be able to analyse the performance of the worker sorting applications with diverse
workload parallelization techniques, multiple application configurations are used. Several
parameters of the application configuration were varied: the number of initial data files,
the size of each initial data file, the number of categories that must be defined and the
number computing nodes used. In all configurations, the total size of the data that must
be sorted is of 100 GB. In some configurations we aim for a full parallelization of the
workload, but because there is only a limited number of nodes that are available, with some
of the configurations, full parallelization is not possible. An overview of the application
configurations that we used can be observed in Table 1.

3.2.3 TPC-DS Query Application

This application is composed of four python3 scripts that are executed in the Amazon
Web Services cloud environment. Each script implements a different TPC-DS query.
Each query is divided in several stages and makes use of AWS Lambda cloud functions to
execute them.
Each script implements a query through a number of stages. For each stage, a number of
cloud functions are activated. For all AWS Lambda cloud functions, both the Init stage
and the Invoke stage are analysed. The Init stage is the stage at which the execution
environment is created, meaning that the resources are gathered and the code base of
the function is downloaded and compiled. The Invoke stage is the stage at which the
function actually executes. In this sense, depending on which stage of a query a cloud
function is assigned to, each cloud function executes different code. However, all scripts
are designed in such way that at each stage, each cloud function is required to read some
data from the S3 cloud storage, process it and store the processed data. As all runs of
an application configuration use the same data set, all cloud functions deployed for the
same stage have to do the same amount of work. For each cloud function, no matter what
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Total data size
Number of
data files

Size of each
data file (MB)

Number of
categories

Number of
computing nodes

100 1000 100 256 11

100 1000 100 512 11

100 1000 100 512 22

100 100 1000 256 11

100 100 1000 512 11

100 100 1000 512 22

Table 2: Application configuration of the Worker Sorting Applications with Diverse Work-
load Parallelization.

query stage it executes, there are 3 tasks to be monitored: Read data task, Process
data task and Write data task.
All four scripts are part of the experiments and they follow two different experiment
configurations: a database total size of 10 GB and a database total size of 100 GB.
Moreover, 10 runs of the same application configuration is being executed. As the database
size grows, the size of each table grows as well. In order to keep the functions within
affordable execution prices, each table is split within multiple CSV files. In this sense,
each cloud function is designated one CSV file to process. Moreover, at each stage, a
different number of files are generated as a result. Consequently, as the database size
grows, more traffic is generated, therefore more reads and writes to/from the S3 cloud
storage are required. The results of the analysis based on the application configuration
described below are presented in Chapter 5.

3.3 Experiment Design Across Diverse Resources

3.4 Serverless Sorting Application

The serverless sorting application is deployed in the AWS cloud environment and makes
use of the AWS Lambda cloud functions. Every Lambda function that runs during the
experiments is configured to use 2048 MB RAM memory. Although this can mean over-
provisioning in some cases, the CPU power that each cloud function can access depends
on the memory size, therefore, it was decided to keep the resource usage uniform across all
experiments, in order to create meaningful comparisons between runs of different config-
urations. In this sense, 2048 MB of RAM memory satisfies all experiment configurations
that were selected.
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No. processes
reading tasks pool

No. processes
processing tasks pool

No. processes
writing tasks pool

8 8 8

6 10 4

4 10 10

Table 3: Distribution of number of processes per pool for the Determine Categories Stage
of the Worker Sorting Application with Task Parallelization.

No. processes
reading tasks pool

No. processes
processing tasks pool

No. processes
writing tasks pool

18 4 2

14 6 4

10 8 6

Table 4: Distribution of number of processes per pool for the Sort Categories Stage of the
Worker Sorting Application with Task Parallelization.

3.5 Worker Sorting Applications

The worker sorting applications are deployed on the computing nodes of the DAS-6 cluster
owned by Vrije Universiteit. This cloud contains up to 34 nodes, each having 24 CPU
cores. However, the experiments do not require the usage of all nodes. Multiple instances
of the worker applications are deployed on the cluster, each instance being deployed on
a separate computing node. The worker applications are able to parallelize their work,
assigning jobs or tasks to separate processes on the node. Moreover, the data used by
the worker applications is stored on another node present on the DAS-6 cloud. The data
is made accessible through MinIO, a High Performance Object Storage compatible with
Amazon S3 storage.
As each computing node has 24 CPU cores, we use a maximum of 24 parallel processes.
Moreover, for our experiments we use use two variations of the numbers of computing
nodes: 11 and 22. This means that we can have a total of 264 processes available or 528
processes available. We chose those numbers in order to reach full parallelization when
having 256/512 categories to sort during the Sort Categories Stage.
For the worker sorting application with job parallelization each instance is able to process
24 jobs in parallel. For the worker sorting application with task parallelization this means
that each application instance is able to process 24 tasks in parallel. However, for the
latter one we define three pools of processes: 1 pool dedicated to the reading tasks, 1
pool dedicated to the processing tasks (sorting and determine categories tasks) and 1 pool
dedicated to the writing tasks. In this case, we decided to run experiments with different
number of processes per pool in order to observe how the performance of the application
changes and to find the most efficient configuration. Table 3 presents the variations in
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number of processes assigned to each pool for the Determine Categories Stage and Table
4 presents the number of processes assigned to each pool for the Sort Categories Stage.

3.6 TPC-DS Query Application

This application is composed of three python3 scripts that are executed in the Amazon
Web Services cloud environment. Each script implements a different TPC-DS query. Each
query is divided in several stages and the application makes use of AWS Lambda cloud
functions to execute them.
Similar to the Serverless Sorting Application, we chose to use the same resource configu-
rations, although it can mean over-provisioning in some cases.
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4 Performance Analysis and Comparison of the Worker-
Sorting Application Running on DAS-6 Resources with
Diverse Workload Parallelization Techniques

Question 1: What is the performance impact of sorting big data in cluster
environments?

This chapter presents the performance analysis of the worker sorting application running
on DAS-6 cluster. The worker sorting application implements the sorting algorithm as
an application that can be deployed on a virtual machine. In our case, we deployed
the worker sorting application on virtual machines hosted on the computing nodes of
the DAS-6 Vrije Universiteit cluster. The worker sorting application does not process
workload sequentially, but it does it rather in parallel. The reason for this is that we
want to maximize the resource usage of the computing nodes where the worker sorting
application is hosted. Moreover, we implemented the worker sorting application following
two different parallelization techniques, namely job parallelization and task parallelization.

4.1 Performance Analysis of the Worker-Sorting Application with Job
Parallelization

Question 1.1: What is the performance of data-intensive sorting application with job
parallelization in cluster environments?

For the Worker Sorting Application with Job Parallelization, the workload is delivered
in the form of jobs and the application is able to parallelize them by assigning each job
to a separate process on the computing node. In turn, each job consists of multiple
tasks that are generally referred as reading tasks, processing tasks and writing tasks.
In this section the we present our observations based of the experiments ran with this
application following multiple experiment configurations. The section is structured based
on observations at the task level, as well as observations on the entire application execution.

4.1.1 Large I/O Operations

The sorting application relies on I/O operations for both retrieving the data that must be
sorted as well as submitting the sorted data (Figures 1 and 2) (FR 1). Figure 6 indicates
the times necessary for reading task of the first stage of the sorting application to download
the initial data. There are 100 jobs reading tasks per experiment run, each of them being
required to download 1GB of data from storage. Moreover, the figure presents the data
collected during 10 experiment runs. Likewise, Figure 7 indicates the upload times of the
data processed by the writing tasks of the first stage of the sorting application, for the
same duration of 10 experiment runs. Each task saves the data in one file of 1GB for
every experiment. Similarly, Figures 8 and 9 represent the execution times required by
1000 reading tasks and 1000 writing tasks per experiment run for data of 100MB per task.
The data is collected during 10 experiment runs.
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Figure 6: Execution time of the reading tasks
of the Determine Categories Stage during 10
experiment runs of an experiment with a con-
figuration of 100 initial files of 1GB each.

Figure 7: Execution time of the writing tasks
of the Determine Categories Stage during 10
experiment runs of an experiment with a con-
figuration of 100 initial files of 1GB each.

Figure 8: Execution time of the reading tasks
of the Determine Categories Stage during 10
experiment runs of an experiment with a con-
figuration of 1000 initial files of 100MB each.

Figure 9: Execution time of the writing tasks
of the Determine Categories Stage during 10
experiment runs of an experiment with a con-
figuration of 1000 initial files of 100MB each.

The reading of the data varies between 0.10 seconds and up to 8 seconds in the case of
100MB files. However, 80% of the tasks complete in less than 4 seconds, whereas only 20%
of the tasks take between 4 and 8 seconds to complete. The same phenomenon can be
noticed in the case of 1GB files. Each task requires between 13.5 seconds and 19.5 seconds
for reading a data file of 1GB, with 80% of the reading tasks finishing in maximum 15.5
seconds and only 20% of the tasks requiring between 18 and 19.5 seconds.

It can be observed that the writing tasks take longer than the reading tasks. Here, in the
case of 100MB files, the fastest execution time is of 0.10 seconds and the slowest is of 33
seconds, while for the 1GB files, the execution time varies between 57 seconds and 100
seconds. Another aspect worth mentioning is that, unlike the case of the reading tasks,
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the writing tasks have a more linear variability.

The variability of the reading and writing tasks is a consequence of the shared bandwidth.
Each computing node has 100Gbit of available bandwidth. However, the bandwidth is
shared between the number of concurrent connections. During the experiment runs, it
was ensured that no other connections were active. However, the storage system for
the data files is also hosted on a computing node with a 100Gbit/s internet connection.
Consequently, it means that each task must share a total of 100Gbit bandwidth with all
the other reading and writing tasks that are running simultaneously. This is a consequence
of the fact that the reading tasks are the first tasks in the determine categories stage jobs.
In this sense, the reading tasks start and finish in approximately the same time. On
the contrary, the writing tasks are the last tasks to run within the jobs of the determine
category stage. As it can be observed in Figures 14 and 15, the second task within the
determine categories stage job, which amounts to sorting initial data and determining
categories, also shows some variability in its execution time. Consequently, the writing
tasks do not start all in the same time, but rather at different points in time. As a result,
the execution time of the writing tasks is more linear, with faster execution for the first
tasks and longer execution for the later ones.

This analysis contributes to the observation O-1 and towards achieving Experimental
Goal 1.

4.1.2 Small I/O Operations

During the second stage the sorting application executes jobs where each of them is re-
quired to read a category determined during the first stage, sort the category and write it
back into the storage (Figure Stage 2.) (FR 2). Each category is composed of multiple
partitions. Each partition represents a small part of a file that was uploaded during the
first stage. Depending on the configuration, a category can be composed of either 100 par-
titions or 1000 partitions. There are 100 partitions per category when the configuration
contains 100 initial data files of 1GB each. Consequently, if the configuration requires to
define 256 categories, each partition is approximately 3.9 MB and there is a total of 25 600
partitions. Moreover, if the configuration requires to define 512 categories, each partition
is approximately 1.95 MB with a total of 51 200 partitions. On the other hand, there are
1000 partitions per category when the configuration contains 1000 initial files of 100MB
each. In this sense, when the configuration defines 256 categories, each partition is ap-
proximately 0.39 MB with a total of 256 000 partitions. Similarly, when the configuration
defines 512 categories, each partition is approximately 0.195 MB with a total of 512 000
partitions.

Figures 10 and 11 represent the execution times of the tasks responsible for reading each
data partition from 100 files of 1 GB each, during all 10 experiment runs, while having de-
fined 256, respectively 512 categories. Similarly, Figures 12 and 13 represent the execution
times of the tasks responsible for reading each data partition from 1000 files of 100 MB
each, during all 10 experiment runs, while having defined 256, respectively 512 categories.
As it can be observed, all four cases have very similar results. In all cases, almost 100%
of the I/O operations finish within 0.25 seconds. Moreover, outliers can be observed, as
a very small percentage of the reading tasks take longer - in some cases up to 4 seconds.

33



0.0 0.5 1.0 1.5 2.0
Execution time (s)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

Figure 10: Execution time of the tasks read-
ing each partition during the Sort Categories
Stage during 10 runs of an experiment with a
configuration 100 data files of 1GB each and
256 categories.
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Figure 11: Execution time of the tasks read-
ing each partition during the Sort Categories
Stage during 10 runs of an experiment with a
configuration 100 data files of 1GB each and
512 categories.
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Figure 12: Execution time of the tasks read-
ing each partition during the Sort Categories
Stage during 10 runs of an experiment with a
configuration 1000 data files of 100MB each
and 256 categories.
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Figure 13: Execution time of the tasks read-
ing each partition during the Sort Categories
Stage during 10 runs of an experiment with a
configuration 1000 data files of 100MB each
and 512 categories.

Compared to the large I/O operations discussed in the previous section, consistency in
the execution time can be observed. This is due to the small sizes of the partitions that
must be downloaded by each job.

This analysis contributes to the observation O-1 and towards achieving Experimental
Goal 1.
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Figure 14: Processing time for sorting each of
the 256 categories by the first 2 bytes within
100 files of 1GB each per experiment run dur-
ing the Determine Category Stage within 10
experiment runs.

Figure 15: Processing time for sorting each of
the 256 categories by the first 2 bytes within
1000 files of 100MB each per experiment run
during the Determine Category Stage within
10 experiment runs.

Figure 16: Processing time for sorting and
determining each of the 256 categories by the
first byte within 100 files of 1GB each per ex-
periment run during the Determine Category
Stage within 10 experiment runs.

Figure 17: Processing time for sorting and
determining each of the 256 categories by the
first byte within 1000 files of 100MB each per
experiment run during the Determine Cate-
gory Stage within 10 experiment runs.

4.1.3 Processing Tasks

Besides the I/O operations related tasks, the jobs of the sorting application also contain
tasks that process the data. During the first stage of the application each job is required
to sort the data that was previously read and to determine the all categories required by
the experiment configuration (Stage 1.) (FR 2). Moreover, during the second stage,
after downloading all partitions of a category, each job is required to sort the category.

Figures 14 and 15 represent the processing time for sorting 1GB of data and 100MB of
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Figure 18: Processing time for sorting each
of the 256 categories within 100 files of 1GB
each per experiment run during the Sort Cat-
egory Stage within 10 experiment runs.

Figure 19: Processing time for sorting each of
the 256 categories within 1000 files of 100MB
each per experiment run during the Sort Cat-
egory Stage within 10 experiment runs.

data respectively, during the first stage of the application within 10 different experiment
runs. It can be observed that for the majority of the tasks it takes between 16 and 17
seconds to process 1 GB of data. On the other hand, it takes between 2 and 2.3 seconds
for the majority of tasks to process 100 MB of data.

Figures 16 and 17 represent the processing time for sorting and determining the categories
within 1GB of data and 100MB of data respectively, during 10 experiment runs. As it
can be observed the two graphs have a similar curve, with the majority of tasks finishing
between 30 and 35 seconds for 1GB of data and between 2.5 and 5.5 seconds for 100MB
of data.

Figures 18 and 19 represent the execution time of the tasks sorting each category during
10 different experiment runs during the second stage of the application. As each category
resembles to the same size, despite the number and size of the initial data files, it can be
observed that the graphs are very similar, with most of the tasks finishing between 5.5
and 6.5 seconds. However, there are small differences, depending on the complexity of the
shuffle of the data to be sorted.

This analysis is summarized in observation O-2 and participates towards achieving Ex-
perimental Goal 2.

4.1.4 Application Execution Time

The sorting algorithm is designed to execute in two stages, Determine Categories Stage
and Sort Categories Stage, and they are implemented in the worker sorting application
(FR 4. For each stage the worker application must process a number of jobs, depending
on the application configuration. Moreover, the worker application cannot proceed to
the second stage until all the jobs related to the first stage are completed. In turn, the
application execution is finished only when all the jobs related to the second stage finish.
Each job consists of multiple tasks that are referred to as reading tasks, processing tasks
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Figure 20: Execution times for the Determine
Categories Stage during 10 experiment runs
of an experiment with a configuration of 1000
initial data files of 100MB each and 11 com-
puting nodes.
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Figure 21: Execution times for the Determine
Categories Stage during 10 experiment runs
of an experiment with a configuration of 100
initial data files of 1GB each and 11 comput-
ing nodes.
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Figure 22: Execution times for the Determine
Categories Stage during 10 experiment runs
of an experiment with a configuration of 1000
initial data files of 100MB each and 22 com-
puting nodes.

and writing tasks. In this sense, the execution time of a job is directly affected by the
execution of its tasks.

Figures 20, 21 and 22 present the execution times of the Determine Categories Stage
during 10 runs of experiments using 3 different configurations. For the experiment used
in Figure 20 the configuration specifies that 11 computing nodes are used to process 1000
data files of 100MB each, in Figure 21 the configuration specifies that 11 computing nodes
are used to process 100 data files of 1GB each and in Figure 22 the configuration specifies
that 22 computing nodes are used to process 1000 data files of 100MB each. It can be
observed that in all of the cases the execution time of the Determine Categories Stage is
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Figure 23: Execution times for the Sort Cate-
gories Stage during 10 experiment runs of an
experiment with a configuration of 1000 ini-
tial data files of 100MB each, 256 categories
to be sorted and 11 computing nodes used.

100 105 110
Execution time (s)

0.2

0.4

0.6

0.8

1.0

EC
DF

Figure 24: Execution times for the Sort Cate-
gories Stage during 10 experiment runs of an
experiment with a configuration of 100 initial
data files of 1GB each, 256 categories to be
determined and 11 computing nodes.

not constant, but it rather varies. In Figure 20 it can be noticed that in 9 out of 10 the
stage completion time had a variation of 5 seconds, with the lowest being 90 seconds and
the highest being 95 seconds. However, there was 1 experiment run that required 107.5
seconds to complete the stage. For an experiment configuration of 100 files of 1 GB each
(Figure 21) the stage completion times has higher variation with the lowest being of 133.8
seconds and the highest being of 146 seconds. In the last case, where the experiment
configuration requires that 22 computing nodes should process a total of 1000 data files
of 100MB each, in 9 out of 10 runs the stage execution time has a variation of 25 seconds,
with the lowest being 145 seconds and the highest being 170 seconds, and in 1 run it only
required 125 seconds. While figures 20 and 21 present the execution times of experiments
running configurations with the same total size of data to be processed, 100GB, and the
same amount of computing nodes used, 11, with the difference that in one case the data
is split among 1000 files of 100 MB each and in the second case the data is split among
100 files of 1GB each, it can be noticed that it was faster to process 1000 files of 100
MB each rather than 100 files of 1 GB each. Moreover, comparing Figures 22 and 20
where the experiment configurations required that 1000 data files of 100 MB each must be
sorted, with the difference that in the first case 22 computing nodes were involved and in
the second case there were only 11 computing nodes used, it can be observed that while
more servers are used, the stage execution time increases. This is the cause because each
node, including the storage node, has a limited bandwidth which must be shared with all
concurrent connections.

Figures 23, 24, 25, 26, 27 and 28 present the execution times of the Sort Categories Stage
in different experiment configurations such as different number of initial data files used,
different sizes of the initial data files, different categories to be sorted and different number
of computing nodes. It can be observed that in all of the cases there the stage execution
time is variable. It is interesting to note that in the experiments running a configuration
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Figure 25: Execution times for the Sort Cate-
gories Stage during 10 experiment runs of an
experiment with a configuration of 1000 ini-
tial data files of 100MB each, 512 categories
to be sorted and 11 computing nodes.
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Figure 26: Execution times for the Sort Cate-
gories Stage during 10 experiment runs of an
experiment with a configuration of 100 initial
data files of 1GB each, 512 categories to be
sorted and 11 computing nodes.
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Figure 27: Execution times for the Sort Cate-
gories Stage during 10 experiment runs of an
experiment with a configuration of 1000 ini-
tial data files of 100MB each, 512 categories
to be sorted and 22 computing nodes.
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Figure 28: Execution times for the Sort Cate-
gories Stage during 10 experiment runs of an
experiment with a configuration of 100 initial
data files of 1GB each, 512 categories to be
sorted and 22 computing nodes.

that requires 256 data categories to be sorted, no matter whether the data is split among
1000 files of 100MB each or 100 files of 1GB each, the stage execution times are very
similar with a variation between 102 and 112 seconds. However, in the cases at which the
experiment configuration requires 512 categories to be sorted, it can be noticed that the
stage execution time is lower when the data is split among 100 files of 1GB each, rather
than when the data is split among 1000 files of 100 MB each. Moreover, it requires less
time for the Sort Categories Stage to complete when there are only 11 computing nodes
executing (Figure 26), than when there are 22 computing nodes executing (Figure 28).
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Figure 29: Execution times for the writing
tasks of the Sort Categories Stage during 10
experiment runs of an experiment with a con-
figuration of 100 initial data files of 1GB each,
512 categories to be sorted and 11 computing
nodes.

Figure 30: Execution times for the writing
tasks of the Sort Categories Stage during 10
experiment runs of an experiment with a con-
figuration of 100 initial data files of 1GB each,
512 categories to be sorted and 22 computing
nodes.

The difference in the execution times of the two cases is mainly generated by the slower
executions of the writing tasks. As it can be observed in Figure 29, when using only 11
computing nodes, it takes 90 seconds for the slowest task to complete. However, when
using 22 computing nodes, it requires up to 120 seconds for the slowest writing task to
complete (Figure 30). This is again a caused by the numerous writing tasks executing
concurrently, thus sharing the bandwidth.

This analysis is summarized in observation O-3 and participates towards achieving Ex-
perimental Goal 4.

4.1.5 Observations

In this section we analysed the execution of the worker application using job parallelization.
Multiple instances of the worker application were deployed on the DAS-6 cluster, each
instance being hosted on one computing node. Moreover, the data storage was hosted
on a different node and made accessible through MinIO, a High Performance Object
Storage compatible with Amazon S3 storage. A list of the main observations on the
execution of different tasks during our experiments on the worker sorting application with
job parallelization is presented below:

• O-1. I/O Operations Tasks

In section 4.1.1 we analysed the execution of the large I/O operations, in Section
4.1.2 we analysed the execution of small I/O operations, while in Section 4.1.3 we
analysed the execution of the processing tasks. We define large I/O operations by
referring to reading and writing data objects of sizes varying from 100 MB and up
to 1GB from/to storage. Similarly, we refer to small I/O operations by referring to
reads and writes of data objects with sizes varying from 0.195 MB and up to 3.9
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MB. Moreover, we refer to the sorting and category determination tasks as processing
tasks.

On one hand, we observed that for the large I/O operations a major drawback is
made by the available bandwidth. As more jobs are executed simultaneously, the
available bandwidth for each connection gets smaller, thus requiring more time for
each job to finish their I/O operations. In this context, we observed a high variability
in the execution of the reading and writing tasks of the jobs, more precisely of up to
8 seconds for the reading tasks and up to 40 seconds for the writing tasks. On the
other hand, for the small I/O operations the execution time was, in general, constant,
due to the fact that those tasks did not require a lot of bandwidth. More than 99%
of the small I/O operations completed instantly. However, we could observe a small
number of outliers where few tasks required up to 4 seconds to complete.

• O-2. Processing Tasks

We observed variability in the execution of the the processing tasks as well. However,
the variability in the execution time was only of a couple of seconds and not of tens
of seconds as in the case of the large I/O operations tasks.

• O-3. Application Execution Time

The worker sorting application with job parallelization executes in two stages. In or-
der to complete, both stages must be finished. Moreover, for each stage to complete,
all jobs generated for that stage must be successfully executed. In turn, each job is
composed of I/O operations tasks and processing tasks. As we previously observed,
each type of task has a certain variability in its execution time. The execution time
of each application stage and of the entire application is highly influenced by the
variability of the tasks executed. As a result, in Section 4.1.4 we could observe a
variability of up to 40 seconds in the completion time of a stage.

4.2 Performance Analysis of the Worker-Sorting Application with Task
Parallelization

Question 1.2: What is the performance of data-intensive sorting application with task
parallelization in cluster environments?

For the Worker Sorting Application with Task Parallelization, the workload is delivered in
the form of jobs, just as in the previous case. Different than the previous implementation,
this application first divides all the jobs that it must process into multiple tasks, namely
reading tasks, processing tasks and writing tasks. Moreover, the application creates a pool
of processes for each type of task and it submits each task to its dedicated pool.

For both the Determine Categories Stage and Sort Categories Stage the application creates
3 pools of processes, each dedicated to one type of task. The number of processes that a
pool can have is configurable, but the total number of processes used by the pools is always
24. This is the case because each computing node has 24 CPU cores, therefore it can handle
at most 24 parallel tasks. It was observed that based on the number of processes assigned
to each pool, the application yields different execution times. To have a good analysis we
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first experimented with different numbers of processes each pool can have. The results are
presented in the next section. Furthermore, this section presents our observations on the
execution of the tasks, as well as on the execution of the entire application. These results
are based on experiments that were ran using the best configuration in terms of number
of processes per pool.

4.2.1 Process pools

The application implements both the Determine Categories Stage and Sort Categories
Stage. At each stage, the application creates three different pools of processes, each being
assigned to handle tasks of one type, reading tasks, processing tasks and writing tasks.
Moreover, the application is able to configure the number of processes available for each
pool based on the stage that it must execute. In this sense, it can have two different
configurations, one for each stage.

To understand what is the best configuration in terms of the number of processes assigned
to each type of pool we analyse the execution times of both the Determine Categories
Stage and the Sort Categories Stage. We determine the best configuration as being the
one that executes faster on the given stage.

Determine Categories Stage

Figure 31 presents the stage execution times during 10 runs of an experiment configured
to use 8 processes for each type of task. Figure 32 presents the stage execution times
during 10 runs of an experiment configured to use 4 processes for the reading tasks, 10
processes for the processing tasks and 10 processes for the writing tasks. Moreover, Figure
33 presents the stage execution times during 10 runs of an experiment configured to use 6
processes for the reading tasks, 10 processes for the processing tasks and 8 processes for
the writing tasks. As it can be observed, in all of the cases, the stage finishes within a
similar amount of time. However, it can be noticed that when using 6 processes for the
reading tasks, 10 processes for the processing tasks and 8 processes for the writing tasks
(Figure 33), the execution of the stage takes less time, with the majority of runs requiring
between 75 and 78 seconds. In the other two cases, all the stage execution times take
longer than 78 seconds, but less than 82.5 seconds.

To understand the cause of the different execution times further analysis is performed
on the execution times of each task based on their type. The results revealed that for
each type of task, the execution times are similar, regardless of the number of processes
that were used for each pool. The reading tasks have the same variation in all the cases
presented above, with the fastest execution time being of 0.5 seconds and the slowest
execution time being of 4.5 seconds. Moreover, the curve of the graph is the same, the
majority of tasks requiring around 2 seconds to complete (Figure 34). A similar behavior
was observed for the processing tasks for which, regardless of the configuration, the tasks
required between 2.8 and 7.5 seconds, with 60% of the tasks finishing within 3 seconds.
Also, for all the cases the ECDF graphs present a similar curve for the execution times of
these tasks (35. In the case of the writing tasks, they all have a similar execution time
variation, regardless of the number of processes used for their pool (36). The writing tasks
execution times varies from 0.3 seconds up to 18 seconds. However, 80% of the tasks finish
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Figure 31: Execution times of the Determine
Categories Stage during 10 experiment runs
of an experiment with a configuration of 8
processes for the reading tasks, 8 processes
for the processing tasks and 8 processes for
the writing tasks.
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Figure 32: Execution times of the Determine
Categories Stage during 10 experiment runs
of an experiment with a configuration of 4
processes for the reading tasks, 10 processes
for the processing tasks and 10 processes for
the writing tasks.
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Figure 33: Execution times of the Determine
Categories Stage during 10 experiment runs
of an experiment with a configuration of 6
processes for the reading tasks, 10 processes
for the processing tasks and 8 processes for
the writing tasks.

within 5 seconds. As the tasks of each type have similar execution times, regardless of
the configuration, it can be concluded that in the case of 6 processes for the reading tasks
pool, 10 processes for the processing tasks pool and 8 processes for the writing tasks pool,
the processes of each pool are less likely to starve, meaning that better parallelization was
achieved.
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Figure 34: Execution times of the reading
tasks of the Determine Categories Stage dur-
ing 10 experiment runs of an experiment with
a configuration of 6 processes for the reading
tasks.

Figure 35: Execution times of the process-
ing tasks of the Determine Categories Stage
during 10 experiment runs of an experiment
with a configuration of 6 processes for the
processing tasks.

Figure 36: Execution times of the writing
tasks of the Determine Categories Stage dur-
ing 10 experiment runs of an experiment with
a configuration of 6 processes for the process-
ing tasks.

Sort Categories Stage

Figures 37, 38 and 39 present the execution time of the Sort Categories Stage during 10
runs of experiments that use different configurations in terms of the number of processes
assigned for each of the three pools. Figure 37 presents the results of an experiment where
there were 18 processes assigned to handle the reading tasks, 4 processes for handling the
processing tasks and only 2 processes for handling the writing tasks. We chose a large
number of processes for handling the reading processes because in the Sort Categories
Stage the application is required to execute a large number of reading tasks, due to the
multiple partitions that must be read in order to reassemble the categories to be sorted.
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Figure 37: Execution times of the Sort Cate-
gories Stage during 10 experiment runs of an
experiment with a configuration with 18 pro-
cesses for the reading tasks, 4 processes for
the processing tasks and 2 processes for the
writing tasks.
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Figure 38: Execution times of the Sort Cate-
gories Stage during 10 experiment runs of an
experiment with a configuration with 14 pro-
cesses for the reading tasks, 6 processes for
the processing tasks and 4 processes for the
writing tasks.
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Figure 39: Execution times of the Sort Cate-
gories Stage during 10 experiment runs of an
experiment with a configuration with 10 pro-
cesses for the reading tasks, 8 processes for
the processing tasks and 6 processes for the
writing tasks.

The total number of partitions that must be read by all the worker applications deployed
on the computing nodes during the Sort Categories Stage for a configuration of 1000 data
files and 256 categories is 256 000. However, it is important to note that only a fraction
of the total number of partitions must be read by each worker application. Figure 38
presents the stage execution times during 10 runs of an experiment with a configuration of
14 processes for the reading tasks, 6 processes for the processing tasks and 4 processes for
the writing tasks while Figure 39 uses a configuration of 10 processes for the reading tasks,
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Figure 40: Execution times of reading tasks
of the Determine Categories Stage during 10
experiment runs of an experiment with a con-
figuration with 1000 files of 100MB each.

Figure 41: Execution times of writing tasks
of the Determine Categories Stage during 10
experiment runs of an experiment with a con-
figuration with 1000 files of 100MB each.

8 processes for the processing tasks and 6 processes for the writing tasks. As it can be
observed, each configuration yields different results. However, it can be noticed that using
14 processes for the reading tasks, 6 processes for the processing tasks and 4 processes for
the writing tasks achieves the fastest execution times. In this case, this configuration was
chosen for further analysis.

This analysis is part of the observation O-6 and contributes towards achieving Exper-
imental Goal 1.

4.2.2 Large I/O Operations

The sorting application performs I/O operations for both retrieving the data that must
be processed from the storage system, as well as writing the processed data back into
the storage system (FR 1). During the Determine Categories Stage each of the reading
and writing tasks are required to read and write data of size varies from 100MB to 1GB,
depending on the experiment configuration.

Figures 40 and 41 present the execution times of the reading and writing tasks respectively,
during 10 runs of an experiment with a configuration of 1000 data files of 100MB each.
Moreover, Figures 42 and 43 present the execution times of the same tasks during 10
runs of an experiment, but with a configuration of 100 data files of 1GB each. It can be
observed that in both experiments the execution time of the tasks is variable. Furthermore,
the graphs depicting the execution times of the reading and writing tasks have similar
curve, depending on the experiment configuration. This is a consequence of the number
of concurrently running tasks sharing the available bandwidth. As for the Determine
Categories Stage the configuration sets a number of 6 processes for handling the reading
tasks and 8 processes for handling the writing tasks per worker application and there were
11 instances used in the experiments presented in the graphs, there can be at most 6 * 11
+ 8 * 11 = 154 I/O operations running concurrently. However, this number is fluctuating,
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Figure 42: Execution times of reading tasks
of the Determine Categories Stage during 10
experiment runs of an experiment with a con-
figuration with 100 files of 1GB each.

Figure 43: Execution times of writing tasks
of the Determine Categories Stage during 10
experiment runs of an experiment with a con-
figuration with 100 files of 1GB each.

depending on whether there are still data files to be read and whether there is any data
that has been processed and that must be written to storage.

This analysis is part of the observation O-4 and contributes towards achieving Experi-
mental Goal 1.

4.2.3 Small I/O Operations

During the Sort Categories Stage the application is required to read all the partitions of
all the categories defined in the Determine Categories Stage (FR 1). A partition of a
category represents a small part of a data file generated at the previous stage. Moreover,
each category has exactly one partition in each data file. In this sense, for an experiment
configuration with 100 data files of 1GB each and 256 categories, each category has 100
partitions, each of size 1GB / 256 = 3.9 MB. However, for an experiment configuration
with 1000 data files of 100MB each and 256 categories, each category is composed of
1000 partitions, each of size 100MB / 256 = 0.39 MB. Moreover, in the cases where the
experiment configuration requires that 512 categories must be determined, their partitions
have half the size of the ones where 256 categories must be determined.

Figures 44, 45, 46 and 47 present the execution times of the tasks required to read the
partitions of 256 and 512 categories respectively. For the Figures 44, 45 the tasks were
required to read the partitions from 1000 files of 100MB each, while for the Figures 46
and 47, the tasks were required to read the partitions from 100 files of 1GB each. It can
be observed that in all 4 cases the majority of the tasks finish in less than 0.1 seconds.
However, in the case where the data was split among 1000 files of 100MB, some outliers
are present, with few tasks requiring up to 6 seconds in case of 256 categories and up to
3 seconds in case of 512 categories. In the case where the data was split among 100 files
of 1GB, the slowest task required 0.45 seconds when 256 categories were defined and it
required only 0.35 seconds when 512 categories were defined. It can be concluded that the

47



0 2 4 6
Execution time (s)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

Figure 44: Execution times of reading tasks
of the Sort Categories Stage during 10 exper-
iment runs of an experiment with a configu-
ration with 1000 files of 100MB each and 256
categories.
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Figure 45: Execution times of reading tasks
of the Sort Categories Stage during 10 exper-
iment runs of an experiment with a configu-
ration with 1000 files of 100MB each and 512
categories.
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Figure 46: Execution times of reading tasks
of the Determine categories Stage during 10
experiment runs of an experiment with a con-
figuration with 100 files of 1GB each and 256
categories.

0.0 0.1 0.2 0.3
Execution time (s)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

Figure 47: Execution times of writing tasks
of the Determine categories Stage during 10
experiment runs of an experiment with a con-
figuration with 100 files of 1GB each and 512
categories.

small I/O operations are more likely to have a constant execution. However, exceptions
should be expected.

This analysis is part of the observation O-4 and contributes towards achieving Experi-
mental Goal 1.
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Figure 48: Execution times of sort and deter-
mine categories tasks of the Determine Cat-
egories Stage during 10 experiment runs of
an experiment with a configuration with 100
files of 1GB each and 256 categories.

Figure 49: Execution times of sort categories
tasks of the Sort Categories Stage during 10
experiment runs of an experiment with a con-
figuration with 100 files of 1GB each and 256
categories.

Figure 50: Execution times of sort and deter-
mine categories tasks of the Determine Cat-
egories Stage during 10 experiment runs of
an experiment with a configuration with 100
files of 1GB each and 512 categories.

Figure 51: Execution times of sort categories
tasks of the Sort Categories Stage during 10
experiment runs of an experiment with a con-
figuration with 100 files of 1GB each and 512
categories.

4.2.4 Processing Tasks

During the Determine Categories Stage, after the data entities are read from the files, they
must be sorted by the first two characters of their keys and placed in the category they
belong, before being written to the storage system. Moreover, during the Sort Categories
Stage, the data entities belonging to each category must be sorted by their keys (FR 2).

Figures 48, 49, 50, 51, 52, 53, 54, 55 present the execution times of the sort and deter-
mine categories tasks and the sort categories tasks executing during experiments following
different configurations. It can be observed that in all of the cases the tasks execution
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Figure 52: Execution times of sort and deter-
mine categories tasks of the Determine Cat-
egories Stage during 10 experiment runs of
an experiment with a configuration with 1000
files of 100MB each and 256 categories.

Figure 53: Execution times of sort categories
tasks of the Sort Categories Stage during 10
experiment runs of an experiment with a con-
figuration with 1000 files of 100MB each and
256 categories.

Figure 54: Execution times of sort and deter-
mine categories tasks of the Determine Cat-
egories Stage during 10 experiment runs of
an experiment with a configuration with 1000
files of 100MB each and 512 categories.

Figure 55: Execution times of sort categories
tasks of the Sort Categories Stage during 10
experiment runs of an experiment with a con-
figuration with 1000 files of 100MB each and
512 categories.

times are varying. Moreover, the execution time of the tasks operating on the same file
sizes vary between the same values, no matter what is the number of categories to be
determined or sorted. Furthermore, the execution times have a normal distribution on the
graphs.

This analysis is summarized in observation O-5.
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Figure 56: Execution times of the Determine
Categories Stage during 10 experiment runs
of an experiment with a configuration with
11 computing nodes, 100 files of 1GB each
and 512 categories.
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Figure 57: Execution times of the Sort Cat-
egories Stage during 10 experiment runs of
an experiment with a configuration with 11
computing nodes, 100 files of 1GB each and
512 categories.
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Figure 58: Execution times of the Determine
Categories Stage during 10 experiment runs
of an experiment with a configuration with 11
computing nodes, 1000 files of 100MB each
and 512 categories.
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Figure 59: Execution times of the Sort Cat-
egories Stage during 10 experiment runs of
an experiment with a configuration with 11
computing nodes, 1000 files of 100MB each
and 512 categories.

4.2.5 Application Execution Time

The application implements the sorting algorithm and executes in two stages, Determine
Categories Stage and Sort Categories Stage (FR 3). At each stage the worker application
must complete a number of jobs. For the case of this application, the jobs are split into
multiple tasks. The application advances to the next stage or completes, only when all the
tasks of the previous stage finished. In this sense, the execution time of the tasks of each
stage directly impacts the execution time of the stage and in consequence, the execution
time of the entire application.
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Figure 60: Execution times of the Determine
Categories Stage during 10 experiment runs
of an experiment with a configuration with
22 computing nodes, 100 files of 1GB each
and 512 categories.
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Figure 61: Execution times of the Sort Cat-
egories Stage during 10 experiment runs of
an experiment with a configuration with 22
computing nodes, 100 files of 1GB each and
512 categories.
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Figure 62: Execution times of the Determine
Categories Stage during 10 experiment runs
of an experiment with a configuration with 22
computing nodes, 1000 files of 100MB each
and 512 categories.
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Figure 63: Execution times of the Sort Cat-
egories Stage during 10 experiment runs of
an experiment with a configuration with 22
computing nodes, 1000 files of 100MB each
and 512 categories.

Figures 56, 57, 58, 59 present the execution times of the two application stages when
11 computing nodes were used. It can be observed that the Determine Categories Stage
completes faster when the data is split among 1000 files of 100MB each (Figure 58), rather
than when it is split among 100 files of 1GB each (Figure 56). This is the case because
1 data file of 1GB is processed entirely by 1 process, while the same amount of data is
processed by 10 processes in parallel when the data uses 100MB files. However, this has no
major influence over the Sort Categories Stage. In both configurations the stage complete
in approximately the same time, being just a little bit faster in the case where data is split
among 100 files of 1GB each.
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Figures 60, 61, 62, 63 present the execution times of each stage when using 22 computing
nodes. It can be observed that it takes longer times for the stages to complete in this case,
rather than when using only 11 processing nodes. This is an effect of the fact that more
tasks run in parallel when using 22 processing nodes, thus more tasks share the bandwidth.

This analysis is summarized in observation O-6 and contributes towards achieving Ex-
perimental Goal 4.

4.2.6 Observations

In this section we analysed the execution of the worker sorting application using task
parallelization. Multiple instances of the worker sorting application were deployed on the
DAS-6 cluster, each instance being hosted on one computing node. Moreover, the data
storage was hosted on a different computing node and was made accessible through MinIO,
a High Performance Object Storage compatible with Amazon S3 storage. A list of the
main observations on the execution of different tasks during our experiments on the worker
sorting application with task parallelization is presented below:

• O-4. I/O Operations Tasks

In section 4.2.2 we analysed the execution of the large I/O operations, in Section
4.2.3 we analysed the execution of small I/O operations, while in Section 4.2.4 we
analysed the execution of the processing tasks. We define large I/O operations by
referring to reading and writing data objects of sizes varying from 100 MB and up
to 1GB from/to storage. Similarly, we refer to small I/O operations by referring to
reads and writes of data objects with sizes varying from 0.195 MB and up to 3.9
MB. Moreover, we refer to the sorting and category determination tasks as processing
tasks.

On one hand, we observed that for the large I/O operations the major drawback for
the worker sorting application was made by the available bandwidth. This is because
the more reading and writing tasks executing simultaneously, the less bandwidth
each task had available. However, the application was designed such that we could
configure the number of read and write tasks that can be executed in parallel. In this
way, we ran experiments with different configurations in order to get the best results
in terms of execution time for all tasks involved. Although we managed to improve
the execution times of the tasks and consequently, of the application, variation was
still observed.

On the other hand, for the small I/O operations the execution time was, in general,
constant. This is due to the fact that the small I/O operations do not require a
lot of bandwidth. As a result almost all tasks finish instantly. However, we could
observe that some tasks would require up to 6 seconds to complete.

• O-5. Processing Tasks

We observed variation in the execution time of the processing tasks. In this case,
the variation is around 8 seconds between the fastest and slowest processing task.

• O-6. Application execution Time
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The worker sorting application with task parallelization executes in two stages. In or-
der to complete, both stages must be finished. Moreover, for each stage to complete,
all tasks generated for that stage must be successfully executed. As we previously
observed, each type of tasks has a certain variability in its execution time. The
execution time of each application stage and of the entire application is highly in-
fluenced by the variability of the tasks executed. Because we were able to configure
the number of processes dedicated to each type of task, we managed to minimize
the variability of the execution time of the tasks and to reduce the execution time
of the stages and, in turn of the application.

4.3 Comparison Between the Execution of the Worker Sorting Applica-
tions - Job Parallelization vs. Task Parallelization

Question 1.3: What workload-parallelization technique shows better performance for
the data-intensive sorting application in cluster environments?

Section 4.1 presents the analysis of the execution of the worker sorting application im-
plementing job parallelization, while Section 4.2 presents the analysis of the execution of
the worker sorting application implementing task parallelization. Multiple instances of
the applications were deployed on the DAS-6 cluster, each instance being hosted on one
computing node. Moreover, in both cases, the data was stored on a different node and
was made accessible through MinIO.

Large I/O operations tasks

In both cases we observed that the large I/O operations have a high variation of around 8
seconds. We consider that this is influenced by the available bandwidth. The more reading
and writing operations execute concurrently, the less bandwidth is available for each of
them. However, in the case of task parallelization, because we were able to configure the
number of concurrent connections, we managed to reduce the overall execution time of the
tasks. As we see in Figure 6, for the worker sorting application with job parallelization,
the reading tasks of the Determine Categories Stage during 10 experiment runs of an
experiment with a configuration of 100 initial files of 1GB each varied between 13.5 and
20 seconds, while the same tasks in the case of the worker sorting application with task
parallelization varied between 4 and 16 seconds (Figure 42). Similarly, the reading tasks
of the Determine Categories Stage during 10 experiment runs of an experiment with a
configuration of 1000 initial files of 100MB each varied between 0 and 8 seconds (Figure 8),
while the same tasks in the case of the worker sorting application with task parallelization
varied between 0 and 4.5 seconds (Figure 40).
In the case of the writing tasks of the Determine Categories Stage, during 10 experiment
runs of an experiment with a configuration of 100 initial files of 1GB each, the execution
time of the tasks varied between 57 and 100 seconds (Figure 7), while the same tasks in
the case of the worker sorting application with task parallelization varied between 10 and
85 seconds (Figure 43). Similarly, the writing tasks of the Determine Categories Stage
during 10 experiment runs of an experiment with a configuration of 1000 initial files of
100MB each varied between 0 and 33 seconds (Figure 9), while the same tasks in the
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case of the worker sorting application with task parallelization varied between 0 and 17.5
seconds (Figure 41).

Small I/O operations tasks

In both cases we observe that the execution of small I/O operations tasks happen almost
instantly (Figures 10, 12, 44, 46). Since the data that is being read has very small sizes
(between 0.195MB and 3.9 MB), the tasks do not require a lot of bandwidth to finish their
work. In this sense, the execution time is not affected by the number of concurrent tasks
that are running.

Processing tasks

We observe that the applications perform very similar in the case of the processing tasks.
Figure 17 represents the sorting and determining categories processing time of the tasks
of the worker sorting application with job parallelization, while Figure 52 represents the
sorting and determining categories processing time of the tasks of the worker sorting appli-
cation with task parallelization. Both graphs depict the execution times from experiments
running the same configuration, namely 1000 files of 100 MB each with 256 categories to
be determined. Although the graphs do not present the same distribution, the execution
times in both cases vary between the same limits (2.5 - 5.5 seconds). The same obser-
vation can be made for Figures 19 and 53 where we observe the execution times of the
sort categories tasks during the Sort Categories Stage during 10 experiment runs of an
experiment with a configuration with 1000 files of 100MB each and 256 categories for both
the worker sorting application with job parallelization and the worker sorting application
with task parallelization.

Application execution time

Both the worker sorting application with job parallelization and the worker sorting appli-
cation with task parallelization execute in two stages and they must be completed in order
for the application to finish. Moreover, each stage is considered complete when all work-
load assigned for it is processed. In subsections 4.1.4 and 4.2.5 we observed the execution
times of the stages of the worker sorting applications. As we could see, in both cases the
execution time varied. However, by doing task parallelization it was possible not only to
control the number of concurrent I/O operations and maximizing the throughput, but also
to overlap the execution of multiple types of tasks. In this way, we observed that using
task parallelization we obtained an improvement up to 40% in the application execution
time.
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5 Performance Analysis of the Serverless Applications Run-
ning on AWS Resources and Comparison with the Worker-
Sorting Applications Running on DAS-6 Resources

This chapter presents the performance analysis of the two serverless applications, the
sorting application and the TPC-DS application, running on the AWS cloud. After we
perform the analysis, we compare the results with the ones from the performance analysis
of the worker-sorting applications that ran on the DAS-6 cluster.

5.1 Performance Analysis of the Serverless Applications Running on
AWS Resources

Question 2: What is the performance impact of sorting big data in serverless
environments?

This section presents the analysis of the execution of the serverless applications described
in Section 2. The applications executed following the experiment design and configura-
tions discussed in the Section 3. During the experiment runs, the applications logged
data regarding the execution times of the different processes involved. The experiment
results are structured based on the type of applications developed. Furthermore, for each
application type we analyse the results from the task level as well as from the application
level.

5.1.1 Cold Start

The first observation identified while running the experiments on AWS cloud is the cold
start. This is present in every experiment run, but it is the most noticeable during the
first one. As discussed in the Background section, each cloud function lifecycle starts with
the Init stage. At this point an execution environment is created, necessary resources are
gathered, external dependencies are brought in and the function code-base is deployed.
This is required in order to ensure good conditions for executing the cloud functions.
Moreover, the execution environment is not immediately disbanded after the function
completes. The cloud environment monitors the execution the AWS Lambda environments
already created and disbands the ones for which inactivity is detected over a certain time
period. The user does not have any control over the inactivity timeout and it has been
proven that it is not static. This results in execution environments to be dissolved at
different time intervals.

AWS Lambda automatically reports the initialization times of every function that runs
on the AWS cloud. This data was used to create following ECDF graphs. Figure 64 and
Figure 65 represent the initialization times of the cloud functions that were deployed during
the first run of a selected experiment and executed the Determine Categories Stage of the
sorting application. As it can be observed, these cloud functions required initialization
time. While 65% of the cloud functions managed to get initialized within 0.6 seconds,
35% of them required longer times that go up to 1.6 seconds. Figure 66 depicts the
initialization times of the cloud functions that were deployed during the other 9 runs of
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the same experiment and executed the same stage of the sorting application. It can be
noticed that almost none of cloud functions required any initialization times. However,
there are few cloud functions that still required to run the initialization stage. It can be
deduced that cloud function execution environments reached their timeouts in-between
the experiment runs.
It was observed that the AWS Lambda cloud functions executing at the first stage of an
experiment run require initialization time in order for the execution environment to get
created. However, for cloud functions executing at a later application stage, as well as in
the other experiment runs there is no need for initialization time. These AWS Lambda
cloud functions can reuse the execution environments that were created for the functions
executing at the first stage of the application during the first experiment run. It was
noticed that when 1000 cloud functions are requested, sometimes a few of them require
initialization time, meaning that some of the previously created execution environments
got disbanded.

The cold start directly impacts the execution time of the application as some cloud func-
tions require time to create the execution environments before being able to execute its
job. Moreover, as execution environments get disbanded and having no control over the
timeout required before terminating the environment, it is important to note that even
if one cloud function requires a cold start, the initialization time needed for this function
to run, is inflicted by the entire application. The same happens for applications where a
later stage requires to deploy more functions than any previous stage. The extra functions
have a cold start, thus initialization time is created.

The cold start affects the application execution and even more, its variation. Moreover, the
fact that the user cannot control the timeout for terminating the execution environment
affects the application execution even further. In this sense, it can be the case that
even though a batch of functions just finished their execution, some of the execution
environment could be instantly terminated, the new functions requiring initialization time
again.

On one hand, it can be observed that cold starts mostly happen for the functions that
execute the first stage of any of serverless application (Figures 64 and 65. During this
time an execution environment needs to be created for each cloud function that deployed,
therefore each cloud function registers some initialization time.

On the other hand, as it can be noticed in Figure 67, representing the ECDF graph of
all functions deployed for the Sort Categories Stage of the sorting application where only
512 functions were started, the cloud functions executing this stage does not require any
initialization time. It is important to mention that for the experiment about which Figure
67 presents data, there were 1000 cloud functions running the Determine Categories Stage.
However, Figure 68 depicts the initialization times of cloud functions executing the Sort
Categories Stage of the sorting application, in an experiment where there are 512 cloud
functions executing this stage and only 500 cloud functions for the Determine Categories
Stage. As it can be observed in Figure 68, the extra 12 cloud functions required for the
Sort Categories Stage inferred some initialization time.

Comparing data of different experiments (Figures 64 and 65), we notice that functions
initialization times are never the same throughout the experiments. This is not caused
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Figure 64: Initialization time for 1000 cloud
functions executing the Determine Cate-
gories stage of the sorting application dur-
ing the first experiment run of an experiment
with a configuration of 1000 initial data files
of 100MB each.

Figure 65: Initialization time for 1000 cloud
functions executing the Determine Cate-
gories stage of the sorting application dur-
ing the first experiment run of an experiment
with a configuration of 1000 files of 500MB
each.

Figure 66: Initialization time for cloud func-
tions executing the Determine Categories
stage of the sorting application during the
last 9 experiment runs of an experiment with
a configuration of 1000 files of 500MB each.

by the functions code base, as all functions within one application execute the same code
and require the same dependencies. In this case, the variation of the initialization time is
likely to be influenced by the cloud platform.

It can be concluded that cold starts mostly affects the cloud functions executing the first
stage of each of the serverless applications during the first experiment run and does not
generally pose a problem for the cloud functions that execute the first stage during the
other runs or that execute at later stages in the application flow during any experiment
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Figure 67: Initialization time for the cloud
functions executing the Sort Categories Stage
of the sorting application for all 10 runs of an
experiment with a configuration where 512
categories to be sorted during each run.

Figure 68: Initialization time for the cloud
functions executing the Sort Categories Stage
of the sorting application for the first run of
an experiment with a configuration with 500
initial data files of 200MB each and 512 cat-
egories.
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Figure 69: Host submit events 1 worker pro-
cess.
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Figure 70: Host submit events 100 worker
processes.

run. Other initialization times are reported for the cloud functions that execute at a later
stage in the application flow when more instances are required for that stage than the
highest number of functions required for any of the previous stage (Figure 68).

This analysis is summarized in the observation O-7 and contributes towards achieving
Experimental Goal 3.

5.1.2 Function Invocation Gap

The analysis of the data generated during experiments revealed limitations of the Lithops
library. It can be observed that Lithops does not submit event data to start all required
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Figure 71: Timeline of functions events during one experiment with 1 process per worker.
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Figure 72: Timeline of functions events during one experiment with 100 processes per
worker.
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functions at the same time, but it does it rather sequential. This is the case when using
the default Lithops configuration that sets only one process responsible for starting up
Lambda cloud functions. As a result, Figure 69 presents the fact that Lithops manages to
trigger 1000 functions within 3.5 seconds.

Although Lithops gives the possibility of increasing the number of Lithops processes within
a worker in order to increase parallelization of function activation, it is not possible to
activate very large numbers of cloud functions simultaneously. Figure 70 presents the
host submit events for an experiment that requires 1000 functions while Lithops is con-
figured to use 100 processes per worker. In this case, Lambda functions are triggered in
bursts. However, we can see that each batch of cloud functions are being triggered at an
approximately 10 seconds difference between each other, ending up with the last batch
of functions being deployed approximately 20 seconds later than the first function of the
experiment. This means that depending on the workload, the last batch of functions can
be deployed even later than the first batch of functions finish their execution. This in-
creases the overall time of the experiment runs, as the applications must wait for all cloud
functions executing a certain application stage before being able to move to a next stage.

Moreover, increasing the number of Lithops processes also affects the results fetching
phase. Figures 71 and 72 represent the timeline of events of the cloud functions executing
the Determine Categories stage stage of the sorting application during all 10 runs of an
experiment while using only 1 process and 100 processes per Lithops worker respectively.
As it can be observed, while using only 1 process per Lithops worker, the results are
fetched sequentially. However, when using 100 processes per Lithops worker the results
are fetched in bursts, but it takes much longer to collect the results of all cloud functions
that ran.

In conclusion, the experiment finishes a lot faster when having only 1 process per worker
then when having 100 processes. We experimented with a higher number of processes
as well, but it yielded the same results as when using 1 process per worker. This means
that we reached the maximum number of processes that Lithops can use for a worker.
Moreover, the time it takes for the Lithops library to activate all the cloud functions adds
up to the total execution time of the application. Furthermore, this time is inflicted by
the application at every stage because for every stage the application requires Lithops to
activate a number of functions.

This analysis is part of the observation O-10.

5.1.3 Large I/O Operations

Each of the applications used in the experiments execute reading and writing tasks on the
data files from and to the AWS S3 storage (FR 1). The experiments results revealed that
the execution times of these tasks are generally constant. However, it was observed that
in every experiment there are a number of tasks that require more time to complete.

Figures 73 and 74 represent the times necessary for the cloud functions executing during
the Determine Categories Stage of the sorting application to read and write the data files
from and to the S3 storage environment. The figures present the ECDF graphs of these
execution times within an experiment of 10 runs using a configuration of 1000 initial files
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Figure 73: Execution times of reading tasks
of the Determine Categories Stage of the
sorting application during 10 experiment
runs with a configuration of 1000 files of 100
MB each.
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Figure 74: Execution times of writing tasks of
the Determine Categories Stage of the sort-
ing application during 10 experiment runs
with a configuration of 1000 files of 100 MB
each.
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Figure 75: Execution times of reading tasks
of the Determine Categories Stage of the
sorting application during 10 experiment
runs with a configuration of 1000 files of 1GB
each.
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Figure 76: Execution times of writing tasks of
the Determine Categories Stage of the sort-
ing application during 10 experiment runs
with a configuration of 1000 files of 1GB each.

of 100 MB each for each. In total, each graph presents the execution times of 10 000 tasks.
For this experiment we used 1 process per Lithops worker meaning that the Lambda cloud
functions were activated sequentially, in a timespan of 4 seconds. Because of this, not all
reading tasks were concurrently active. On average, there were 500 active tasks at any
give moment.

Looking at the execution times of the reading tasks, it can be observed that approximately
75% (73) of them had a constant completion time of 1 second. On the other hand, the
rest 25% of the tasks exceeded this value with some of them requiring up to 3.5 seconds
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Figure 77: Execution times of reading tasks
of the Determine Categories Stage of the
sorting application during 10 experiment
runs with a configuration of 500 files of
200MB each.
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Figure 78: Execution times of writing tasks of
the Determine Categories Stage of the sort-
ing application during 10 experiment runs
with a configuration of 500 files of 200MB
each.

to finish.

Similar observations can be made about the execution times of the writing tasks. In this
case, more than 90% of the functions take between 1 and 2 seconds to finish, while only
a small percentage exceed this timespan. However, it can be noticed that for some tasks
the necessary time for writing the data file can reach up to 6.5 seconds. Analysing the
data showed that there is an average of 20 writing tasks exceeding 2 seconds to complete.

The same analysis was also performed based on experiments using other configurations.
Figures 75 and 76 depict the execution times of the reading and writing tasks executed
for an experiment of 10 runs using a configuration of 100 data files of 1GB each. In this
case, little variation can be observed, the majority of the reading tasks executing within
10 - 11,5 seconds. Only a very small percentage of the tasks require longer execution time,
but even in those cases, they do not exceed 14 seconds. On the other hand, looking at the
execution times of the writing tasks, it can be observed that most of the tasks finish in
12 seconds, but for the rest it can take anywhere between 12 and 90 seconds. Figures 77
and 78 represent the execution times of reading and writing tasks during an experiment
with 10 runs using a configuration of 500 data files of 200MB each. Also in this case it
can be observed that the majority of the tasks require the same amount of time to finish.
However, outliers are present in this case as well.

We try to understand the reason for the cloud functions to require longer times for reading
and writing their files. First of all, we observe that there is never the same cloud function
that executes the slower reading and writing tasks. Secondly, we identify how many
functions were concurrently performing the same task when the slowest reading and writing
started. Moreover, we also identify the highest number of functions performing the same
task and we look at the completion times of the last function that joined the batch.
However, no correlation could be done. This is because we could see that the slower task
was performed while different number of functions were already running. Moreover, while
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Figure 79: Execution times of the read partition tasks for each of the 512 categories,
within 10 runs of an experiment

the most number of functions that were concurrently performing the same task, the last
cloud functions that joined those groups did not take longer than the majority to finish.

This analysis showed that there is no configuration that can guarantee that all reading
and writing tasks will complete in the same timespan considering files of the same size.
Moreover, we could not find that something within our application and setup could be the
cause for some cloud functions to take longer to finish their reading and writing tasks.

This analysis is part of the observation O-8 and contributes towards achieving Experi-
mental Goal 1.

5.1.4 Small I/O Operations

Our applications perform both small and large I/O operations (FR 1). During the Deter-
mine Categories Stage, the sorting application reads and writes the data from and to files
of minimum 100 MB and maximum 1 GB. During the Sort Categories Stage, the sorting
application reads multiple partitions of each category, resulting in many, small I/O oper-
ations. A partition of a category consists of a small part of each file generated during the
Determine Categories Stage. As each cloud function is given one category to sort and each
category has a partition in each file uploaded during the first application stage, depending
on the configuration of the experiment, each function must read a number of partitions
ranging from 100 to 1000 in order to reassemble a category. The application implements
a mechanism which only allows reading the data of one partition, without reading the
entire file. In this sense, for a configuration of 1000 initial files of 100 MB that are being
split in 512 categories, during the Sort Categories Stage, we require 512 cloud functions to
read 1000 partitions each, each partition being of size 195.3125 KB. In total, each cloud
function will have read 195.3125 MB.

In Section 5.1.3, we analysed large I/O operations and it can be noticed that most of
the cloud functions complete within the same time frame. However, there are always a
few cloud functions that take considerably longer than the majority. For a better under-
standing, figure 79 depicts the reading time achieved by each function for each partition of

64



Figure 80: Execution times for every read-
ing task of each file executed in the fourth
stage of the first TPC-DS script, during 10
experiment runs.

Figure 81: Execution times for every writing
task of each file executed in the third stage
of the first TPC-DS script, during 10 experi-
ment runs.

Figure 82: Execution times for every reading
task responsible for the first partition of each
file executed in the fourth stage of the first
TPC-DS script, during 10 experiment runs.

Figure 83: Execution times for every writing
task responsible for the first partition of each
file executed in the third stage of the first
TPC-DS script, during 10 experiment runs.

195.3125 KB, during 10 runs of an experiment. In total, there were 5 120 000 reading tasks
performed - 512 categories, multiplied by 1000 files and 10 runs. As it can be observed,
the majority of functions have a constant reading time. However, again, some outliers are
present. The data was analysed and it can be noticed that from 5 120 000 downloads,
there are only 687 different download times, from which only 298 download times took
longer than 0.5 seconds, 67 took longer than 1 second and 231 took between 0.5 and 1
second.

The experiments performed on the TPC-DS scripts provided the possibility of further
analysing the performance of the small I/O operations. During certain stages of some of
the scripts, reading and writing tasks execute on small files. For example, at the third
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Figure 84: Execution times for every reading
task responsible for the 62nd partition of each
file executed in the fourth stage of the first
TPC-DS script, during 10 experiment runs.

Figure 85: Execution times for every writing
task responsible for the 62nd partition of each
file executed in the third stage of the first
TPC-DS script, during 10 experiment runs.

stage of the first TPC-DS script, the data resulted from the first and second stages is
merged and the result is written to the storage system. Moreover, at stage 4, it is required
that the data written during stage 3 is read. The script was configured such that the
merged result is split into multiple, very small files. Consequently, during the third stage,
100 functions are started and each function writes 100 files. During stage 4, 100 functions
are started and each function reads 100 files. Each file has a size varying from a few
hundred bytes to a maximum of 1.5 KB.

Figure 81 represents the execution times of the reading tasks within all functions, respon-
sible for all partitions, executed during 10 runs of an experiment, during stage 4. Figure
80 represents the execution times of the writing tasks within all functions, responsible
for all partitions, executed during 10 runs of an experiment, during stage 3. It can be
observed that the majority of the reading and writing tasks complete almost instantly.
However, although the files are very small, some reading and writing tasks can take up to
one second to finish.

Besides the exceptional cases where reading and writing tasks take longer to finish, the
experiments data revealed that it generally takes longer for the first task to execute, rather
than for the rest of them. Figures 82 and 83 depict the reading and writing times of the
first partition, during an experiment. It can be observed that most of the functions take
more than 0.1 seconds to finish. However, figures 84 and 85 show the reading and writing
tasks execution times of the 62nd partition that was done by each function during an
experiment. For this case, it can be noted that more than 80% of the functions finish their
task in less than 0.06 seconds. This is the case for any other partition that is either read
or write to the AWS S3 storage system.

This analysis is part of the observation O-8 and contributes towards achieving Experi-
mental Goal 1.
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Figure 86: Execution times of the determine
categories task of the Determine Categories
Stage, during 10 runs of an experiment with
a configuration of 1000 files of 100MB each.

Figure 87: Execution times of the sorting
categories task of the Determine Categories
Stage, during 10 runs of an experiment with
a configuration of 1000 files of 100MB each.

Figure 88: Execution times of the determine
categories task of the Determine Categories
Stage, during 10 runs of an experiment with
a configuration of 1000 files of 1GB each.

Figure 89: Execution times of the sorting
categories task of the Determine Categories
Stage, during 10 runs of an experiment with
a configuration of 1000 files of 1GB each.

5.1.5 Processing Tasks

During the experiments, the execution time of the processing tasks were also monitored.
In the case of the sorting application, the processing tasks are responsible for determining
categories and sort the data entities, while in the case of the TPC-DS application, the
processing tasks are responsible for resolving the queries (FR 2).

Figures 86 and 87 depict the necessary time for each task to determine the necessary
categories and sort the data entities, during the Determine Categories Stage of the sorting
application. Each graph depicts the times of 10 000 tasks, that were executed for an
experiment of 10 runs, with the configuration of 1000 initial files, each file having the size
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of 100 MB. Although the computational work is equal for the two types of tasks, time
variability can be observed in both cases. Moreover, it is noticeable that there are no
two tasks with the exact same completion time. Similar results can be observed for all
processing tasks from any experiment configuration of any application. The only difference
that can be seen is in variability, but that is always bound to the size of the data that needs
to be processed. For example, figures 88 and 89 depict the necessary time for each type of
task to sort, respectively determine the categories, during the Determine Categories Stage
of the sorting application. In this case, each graph depicts the execution times of 10 000
functions that ran for an experiment of 10 runs with 1000 initial files, but with each file
having 1 GB in size. It can be observed that the completion times follow a similar pattern
as in the previously analysed case, where for both types of tasks there is a variation, in
this case of approximately 4 seconds. Moreover,there are no two tasks with the same
completion time, although all functions require the same computational effort.

This analysis is summarized in the observation O-9 and contributes towards achieving
Experimental Goal 2.

5.1.6 Application Execution Time

Both the serverless sorting application and the serverless TPC-DS application execute in
multiple stages. At each stage, multiple work jobs are created, each job being executed
by one AWS Lambda cloud function. Moreover, each job is composed of multiple tasks
generally referred as reading tasks, processing tasks and writing tasks. All applications,
in order to successfully execute a stage, require that all jobs belonging to that stage must
be completed (FR 3).

The execution time of a stage depends on the execution times of all its jobs. In turn, the
execution time of a job depends on the sum of the execution times of its tasks. It was
previously observed that the majority of tasks finish within the same timespan. However,
it was noticed that at each stage, there is a small percentage of tasks that take longer to
complete. The execution times of these tasks have a direct impact on the execution time
of the entire stage to which the tasks belong and consequently to the execution time of
the application.

Previously it was observed that all tasks belonging to a stage show some variation in
the execution time. Moreover, it was noticed that the major drawback for the execution
time of a stage is created by the execution times of reading and writing tasks. While for
processing tasks, such as sorting in the case of the sorting application, and query resolving
in the case of the TPC-DS application, there is only a variation of a couple of seconds
no matter what is the size of the data to be processed, for the reading and writing tasks
variation of the execution time can reach tens of seconds.

The execution of the reading tasks has a variation of almost 3 seconds for reading 100 MB
of data per task (figure 73). For the execution of the reading tasks required to read 200MB
of data per task a variation of 4 seconds was observed(figure 77. A similar variation was
also observed for the tasks required to read 1 GB of data each (figure 75).

The execution times of the writing tasks are the most varying. In the first case, the tasks
required to write 100 MB of data each have an execution time variation of 6 seconds (74.

68



2 4 6 8
Execution time (s)

0.0

0.2

0.4

0.6

0.8

1.0

EC
DF

Figure 90: Fetch result time for the Deter-
mine Categories Stage of the serverless sort-
ing application of an experiment with 1000
cloud functions.
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Figure 91: Fetch result time for the Deter-
mine Categories Stage of the serverless sort-
ing application of an experiment with 100
cloud functions.

In the second case, writing 200 MB of data per task has a variation of 23 seconds. In the
last case, the tasks required to write 1 GB of data complete anywhere between 12 and 92
seconds.

In conclusion, the analysis revealed that for each task performed by a cloud variability in
the completion time always exist. Even though the number of tasks that require longer
times to complete is very small compared to the total number of tasks of the same kind
involved in a stage, the fact that task completion time can vary directly affects the execu-
tion time of the stage to which the tasks belong to and in consequence the execution time
application.

This analysis is summarized in the observation O-11 and contributes towards achieving
Experimental Goal 4.

5.1.7 Fetch Results Time

At each stage of the applications data from the previous stages is required. In this sense,
each stage must wait until not only the previous stage has finished, but also wait for
Lithops to gather the result data of the previous stage.

Figures 90 and 91 depict the delay from the moment the cloud functions finished their
execution and the moment Lithops retrieved the functions’ results for the first stage of
the sorting application. The graphs represent the data points gathered throughout the 10
runs of an experiment. As it can be observed some time is spent before all the results can
be gathered. Only after this point the application can continue and can start a new stage.
However, comparing the two figures (90 and 91), we observe that the smaller the number
of functions that were running for the stage, the faster the results are gathered.
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Figure 92: Time to first byte for the GET
requests on the S3 objects used during ex-
periments.
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Figure 93: Time to first byte for the PUT
requests on the S3 objects used during ex-
periments.

5.1.8 Time to First Byte

Figures 92 and 93 represent the time to first byte (TTFB) measured during experiments
for the GET and PUT requests of the applications to AWS S3 storage. As it can be
observed, the GET requests have a lower TTFB than the PUT requests as the majority of
the GET requests are answered in less than 50ms while the majority of the PUT requests
have around 100ms TTFB. Moreover, the GET requests have outliers of maximum 300ms
while the PUT requests reach up to 600ms.

5.1.9 Observations

In this section we presented our analysis on the execution of the serverless applications in
the AWS cloud environment. In this process we analysed the execution times of different
tasks performed by the cloud functions that ran during our experiments. Moreover, we
observed the cold start times required by the cloud functions, as well as the limitations
imposed by the Lithops library, which we used for handling the functions. A list of the
main observations is available below:

• O-7. Cold Start

We observed that cloud functions require a cold start in order to create the execution
environment where they can run. This is especially the case for the cloud functions
that execute during the first stage of an application. The cloud functions executing
at a later stage usually reuse the execution environments created by the previous
cloud functions. Nonetheless, if more cloud functions are required to execute in
the next stage than they were required to execute in the previous stage, then the
additional cloud functions have a cold start. Our measurements showed that cold
starts can take up to 1.6 seconds and it directly impacts the application execution
time.

• O-8. I/O Operations Tasks
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In the subsections 5.1.3 and 5.1.4 we analysed the execution times of the tasks
performing I/O operations, while in Section 5.1.5 we analysed the execution times
of processing tasks. All tasks were carried out by the Lambda AWS cloud functions
used in the experiments of the serverless sorting application and the serverless TPC-
DS application. In Section 5.1.3 we present the analysis of the execution of large I/O
operations and in Section 5.1.4 we analyse the execution of small I/O operations.
We define large I/O operations by referring to reading and writing operations of data
objects of 100 MB and up to 1 GB. Similarly, we define small I/O operations by
referring to reads and writes of data objects of few hundred bytes and up to 200Kb.
Moreover, we define as processing tasks, the operations where sorting is performed,
in the case of the serverless sorting application, or queries are executed, in the case
of the serverless TPC-DS application.

The analysis revealed that the cloud functions have, in general, a steady execution,
with the majority of their I/O operations tasks finishing in the same timeframe.
We observed this regardless of the number of concurrent active functions. However,
there is always a small percentage of tasks that take longer to finish.

• O-9. Processing Tasks

We observed steady execution for the processing tasks. However, a small percentage
of the cloud functions require more time to finish. This translates in an increased
execution time for the entire application, since the applications require that all clouyd
functions executing at a certain stage must finish before proceeding to a next stage.

• O-10. Lithops limitations

We noticed the application execution time was impacted by limitations of the Lithops
library. In this sense, we observed that the library was not capable of starting all
the necessary cloud functions in the same time, but it did it rather sequential. For
1000 cloud functions to start, it would require 3.5 seconds, in general. Similarly, we
observed that the results returned by the cloud functions were not fetched imme-
diately when they were made available, but it would require up to 8 seconds when
fetching results from 1000 cloud functions.

• O-11. Application execution time

All applications used in our analysis execute in multiple stages, therefore the appli-
cation execution time represents the sum of the execution times of all its stages. At
each stage, different numbers of cloud functions are started up in order to execute the
given workload. All cloud functions executing at a certain stage are given the same
amount of work to complete. To complete a stage, all cloud functions executing it
must finish their execution and the results must be fetched by the client handler. As
we previously observed, the completion time of a stage is influenced by the execution
time of different tasks, such as I/O operations tasks and processing tasks, as well as
by the functions’ cold starts of the cloud functions and by the limitations imposed
by Lithops. Because there is variability in the execution of every task, whether it
is cold start, I/O and processing tasks or Lithops tasks, and because an application
stage is complete only when all functions finished their execution, the execution time
of a certain application stage is the sum of the highest execution time of each type
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of task. However, this number can be slightly smaller, as most of the time it is not
the same cloud function that require the maximum time for all the tasks.

5.2 Comparison Between the Execution of the Serverless Sorting Ap-
plication and the Execution of the Worker-Sorting Applications

Question 3: What are the performance differences when comparing the execution of the
data-intensive serverless sorting application and the execution of the data-intensive

sorting applications implementing different workload parallelization techniques in cluster
environments?

The serverless sort application was deployed on the AWS cloud and used AWS Lambda
cloud functions for its execution, while the worker sorting applications were deployed on
the DAS-6 cluster and executed the workload in parallel by assigning jobs and tasks to
separate processes on the computing nodes. Because the applications were deployed in
different environments, an exact comparison of their execution times cannot be made.
We could observe that for the serverless sorting application the cloud functions had, in
general, a steady execution, most of them finishing their work in the same time frame.
However, in the case of the worker sorting applications, variability in the execution times
of the jobs and tasks was observed. Moreover, the biggest variability was observed for the
I/O operations tasks. The reason for this is given by the bandwidth availability. The more
concurrent I/O operations tasks there are, the less bandwidth is available for each of them.
However, we could observe that this was not an issue in the case of the serverless sorting
application. We can conclude that the cloud functions have guaranteed bandwidth, while
in the case of the worker sorting applications, the jobs and tasks running in parallel must
share the available bandwidth.
In the case of the serverless application we could observe overhead inherited from the cold
start of the cloud functions. Moreover, we observed limitations imposed by the Lithops
library which was used for managing the execution of the cloud functions. However, in
the case of the worker applications these overheads were not present. The applications
were up and running at the moment of receiving the workload, therefore no cold start
was required. Moreover, the worker applications do not use Lithops for managing the
workload, but it is passed by the client to the workers using REST APIs. The client is
able to parallelize the calls for submitting the workload, thus doing it instantly.
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6 Discussion, Conclusion and Future Work

6.1 Discussion

In this work we analyse the performance of the AWS serverless cloud environment through
the usage of two different applications. We developed a sorting application and a TPC-DS
application that make use of AWS Lambda cloud functions and can be deployed in the
AWS cloud. The applications can be configured to handle different workloads, such that we
can analyse the performance of the serverless cloud environment under different conditions.
Moreover, we design the serverless sorting application into a worker application that can
be deployed on regular computing nodes and we implement two different approaches. The
first approach only aims at transforming the serverless sorting application into a worker
application, where each job that is handled by a cloud function is, instead, handled by a
separate process on the computing node. The second approach goes a step further and the
application is able to first divide the jobs into smaller tasks in order to process them in
parallel. The worker applications were developed to offer a good overview of the difference
in the execution of the same workload by using cloud functions and parallel processes on
multiple computing nodes.

Cold start in serverless applications

While experimenting with the serverless applications, it was observed that the cloud func-
tions need to perform additional actions in order to execute their code. In this sense, each
cloud function has an initialization phase where the execution environment gets created.
The execution environment gathers the necessary resources, installs the required packages
and compiles the code. The initialization phase is also referred as cold start. The experi-
ments revealed that only the first batch of functions require to go through the initialization
phase, while the other functions can reuse the execution environments previously created.
However, the execution environments get disbanded after a certain amount of time which
makes that some functions, although they run at a later stage of the application, are still
affected by a cold start. As the serverless applications execute in multiple stages, each
stage requiring a number of cloud functions to run and all of them must complete before
moving to the next stage, the cold start directly affects the execution time of the entire
application.

I/O operations tasks and processing tasks in serverless applications

By analysing the execution of different tasks ran by the cloud functions, we could observe
that their completion time is generally constant. This includes reading tasks, processing
tasks and writing tasks. Moreover, it is important to note that the execution times were
not affected by the number of cloud functions running concurrently, although all of them
require to access the same AWS S3 storage location to read and write the data. However,
for every type of task we could observe a small number of outliers that would require
longer times to complete. This is, again, a drawback to the execution time of the stage,
thus of the entire application.

Comparison between the worker sorting application with job parallelization
and the worker sorting application with task parallelization
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Next, we ran experiments with the worker applications. The applications were deployed
on the computing nodes from the DAS-6 Vrije Universiteit cluster. For the experiments
multiple computing nodes were used, each node hosting one application instance. The
workload is orchestrated by a client handler that divides it equally among the available
application instances and delivers it in the form of jobs. The first implementation is able to
process the jobs in parallel by assigning each job to a separate process on the node, while
the second implementation first divides the jobs into smaller tasks and then processing
them in parallel. Each computing node has 24 CPU cores, therefore, each worker appli-
cation was limited at executing a maximum of 24 processes in parallel. Moreover, while
the first approach handles a fixed number of 24 jobs in parallel, for the second approach
we were able to distribute the 24 processes in different proportions for each type of task.
We experimented with different numbers of processes per type of tasks such that we can
obtain faster stage execution time, thus faster application execution time. In this way, we
wanted to eliminate as much as possible the probability that some processes become idle
while waiting for work to be passed, as well as minimizing the execution time of each task.
By comparing the two approaches we can observe that the task parallelization approach
obtained better results for both the individual tasks, as well as for the execution times of
each stage. In some cases we observe an improvement of up to 40% in the stage execution
time (Figures 57 and 26, Figures 58 and 27).

Comparison between the worker sorting applications and the serverless sorting
applications

Because the serverless sorting application was deployed on the AWS cloud environment
and the worker applications were deployed on the DAS-6 cluster, we could not create a
relevant comparisons between their executions. However, on one hand, it can be observed
that the cloud functions have a much more predictive execution, with constant completion
times, while the worker applications do not. The major drawback of the worker application
is caused by the reading and writing data from and to the storage system. The processes
performing the I/O operations must share the bandwidth with the other processes that
are active at that moment. Because the number of active processes is constantly changing,
their execution time is varying. On the other hand, although the cloud functions execution
times are not influenced by the number of instances executing in parallel, they require cold
starts, which represents an additional overhead that is added to the execution time of the
application.

6.2 Conclusion

We guided our work through the means of five main research questions. The questions
were answered in Chapters 4 and 5 where we present the results of our experiments using
multiple applications deployed in the AWS cloud, as well as in the DAS-6 Vrije Universiteit
cluster.

RQ1. What is the performance impact of sorting big data in cluster environ-
ments?

In order to answer this question we designed and implemented the radix sort al-
gorithm within two different sorting applications. Each application uses different
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workload parallelization techniques in order to efficiently process the work. One of
the sorting applications performs job parallelization, where each job consists of sev-
eral tasks executed sequentially, while the other sorting application performs task
parallelization, where each individual task is scheduled for parallel processing.

RQ 1.1. What is the performance of data-intensive sorting application with
job parallelization in cluster environments?

This application processes the workload in parallel by assigning each job to a
separate process on the computing node. In order to analyse the performance
of this application, we divided the job in three main tasks - reading tasks, pro-
cessing tasks and writing tasks. The experiments revealed that the execution
times of each type of task is not reliable, but is rather varying. Smaller vari-
ations could be observed for the processing tasks. However, for the reading
and writing tasks higher variations were observed. The main reason for this is
that all tasks concurrently running at a certain moment in time must share the
bandwidth when reading and writing data from and to the storage system.

RQ 1.2. What is the performance of data-intensive sorting application with
task parallelization in cluster environments?

For this application we observed similar behavior as in the case of the worker
application that uses job parallelization. Variation was observed in the execu-
tion of the tasks, mainly due to the fact that the bandwidth must be shared
among the running tasks.

RQ 1.3. What workload-parallelization technique shows better performance
for the data-intensive sorting application in cluster environments?

The worker sorting application that uses task parallelization is able to better
accommodate the workload. The application defines three different pools of
processes, each of them dedicated to one of the three types of tasks. Although
the number of the same tasks running concurrently is smaller than in the case
of the other worker application, using task parallelization makes it possible to
execute some tasks of each category in the same time. In this way, there are
also less tasks that must share the bandwidth and as a consequence the reading
and writing tasks execution time increases. Comparing the two approaches we
observed that in some cases the worker application using task parallelization
obtain up to 40% faster execution times.

RQ2. What is the performance impact of sorting big data in serverless environ-
ments?

The experiments revealed that the execution times of the stages is generally constant.
However, we observed that for every experiment outliers were present. Because of
how the application is designed, no stage is finished and the application cannot
advance, as long as there are still cloud functions running the certain stage. This
directly impacts the execution time of the entire stage.
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RQ3. What are the performance differences when comparing the execution of
the data-intensive serverless sorting application and the execution of the
data-intensive sorting applications implementing different workload par-
allelization techniques in cluster environments?

Because the serverless sorting application were deployed on AWS cloud and the
worker applications were deployed on the DAS-6 cluster, it was not possible to cre-
ate an in-depth comparison of their executions. However, we could observe that
experiment runs performed on the serverless application offered more reliable results
with execution times being generally constant, while for the worker application this
was not the case. The execution times of experiments ran on the worker application
are highly influenced by the number of concurrent tasks that must share the band-
width. However, by using task parallelization we could improve on the execution
time of the worker sorting application. Moreover, the serverless sorting application
inferred overhead from the cold starts of the cloud functions, as well as from the
limitations imposed by the Lithops library.

6.3 Future Work

In this thesis we developed several data-intensive applications that implement diverse
workload parallelization technique, as well as serverless architectures. First, we imple-
mented the radix sorting algorithm into two different worker sorting applications following
the MapReduce model, and we deployed them on the DAS-6 cluster. Secondly, we im-
plemented two different serverless applications that make use of FaaS, a serverless sorting
application and a TPC-DS application. Although we only experimented on two different
cloud platforms, the DAS-6 cluster and the AWS cloud, all the applications are cloud ag-
nostic and can be deployed on some of the most popular cloud platforms such as Amazon
Cloud, Microsoft Azure, Google Cloud and IBM Cloud. Moreover, the applications are
highly configurable, being very easy to set up experiments with different workloads. Also,
the applications implement functionality to automatically generate the necessary workload
for every experiment configuration. In this sense, further analysis on the cloud platforms
can be done using the benchmark applications developed in this work, such as:

• Other cloud platforms

Analyse and compare the execution of the execution of the data-intensive applica-
tions on the most popular cloud platforms (Amazon Cloud, Microsoft Azure, Google
Cloud and IBM Cloud). Also, it is interesting to analyse the performance of open-
source cloud platforms such as Alibaba and OpenShift. It is interesting to observe
what are the trade-offs between different cloud platforms in terms of I/O operations
performance, computing power and cold starts.

• Cost analysis

Create a cost analysis. Analyse and compare costs of running the same experiments
on different cloud platforms. Observe what are the costs of each process involved in
the execution of the benchmark applications, such as I/O operations tasks, process-
ing tasks and cold starts.
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A TPC-DS queries

The TPC-DS queries are extracted from the source code available on the official TPC-DS
website10.

TPC-DS-1

WITH c u s t o m e r t o t a l r e t u r n AS
(SELECT

sr cus tomer sk AS ct r cus tomer sk ,
s r s t o r e s k AS c t r s t o r e s k ,
sum( s r r e tu rn amt ) AS c t r t o t a l r e t u r n
FROM s t o r e r e t u r n s , date dim
WHERE s r r e t u r n e d d a t e s k = d date sk AND d year = 2000
GROUP BY sr cus tomer sk , s r s t o r e s k )

SELECT c cus tomer id
FROM c u s t o m e r t o t a l r e t u r n ctr1 , s to re , customer
WHERE ct r1 . c t r t o t a l r e t u r n >

(SELECT avg ( c t r t o t a l r e t u r n ) ∗ 1 .2
FROM c u s t o m e r t o t a l r e t u r n c t r2
WHERE ct r1 . c t r s t o r e s k = ct r2 . c t r s t o r e s k )
AND s s t o r e s k = ct r1 . c t r s t o r e s k
AND s s t a t e = ’TN’
AND ct r1 . c t r cu s tomer sk = c customer sk

ORDER BY c cus tomer id
LIMIT 100

The query is implemented throughout 8 stages, each of them solving a different part of
the query. The first 4 stages are dedicated to the WITH statement, whereas the rest 4
are dedicated to the main SELECT statement.

• Stage 1. At stage 1 the date dim table is retrieved from the storage and all the
rows with year 2000 are selected. The selected rows are saved to an intermediate file
on the cloud storage system.

• Stage 2. At stage 2 the store returns table is retrieved from the storage and the
entire sr returned date sk column is saved to a new intermediate file on the cloud
storage system.

• Stage 3. At stage 3 the intermediate files created at stages 1 and 2 are down-
loaded from the storage system and their data is merged on the condition that
sr returned date sk = d date sk. The result is uploaded to an new intermediate file
on the cloud storage system.

10https://www.tpc.org/tpcdocumentscurrentversions/currentspecifications5.asp
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• Stage 4. At stage 4 the intermediate files created at stage 3 is downloaded, grouped
by sr customer sk and sr store sk and the SELECT statement is performed. The
result is then uploaded to an intermediate file.

• Stage 5. At stage 5 the customer table is downloaded and the c customer sk and
c customer id columns are selected. The results are saved to an intermediate file on
the cloud storage.

• Stage 6. At stage 6 the result data of stages 4 and 5 are merged on the condition that
ctr customer sk = c customer sk. The results are then uploaded to an intermediate
file on the cloud storage.

• Stage 7. At stage 7 the state table is downloaded s state and s store sk columns
are selected. The results are saved to an intermediate file on the cloud storage.

• Stage 8. At stage 8 the result data of stages 6 and 7 are merged on the condition
that ctr store sk = s store sk. The result is grouped by ctr store sk and the mean
of the ctr total return is calculated. The mean of the ctr total return is used to
construct the main WHERE clause. In the end the main SELECT statement is
resolved and the result is uploaded to the cloud storage.

TPC-DS-16

SELECT
Count (DISTINCT cs order number ) AS ‘ order count ‘ ,
Sum( c s e x t s h i p c o s t ) AS ‘ t o t a l sh ipp ing cost ‘ ,
Sum( c s n e t p r o f i t ) AS ‘ t o t a l net p r o f i t ‘

FROM c a t a l o g s a l e s cs1 ,
date dim ,
customer address ,
c a l l c e n t e r

WHERE d date BETWEEN ’2002−3−01 ’ AND (
Cast ( ’2002−3−01 ’ AS DATE) + INTERVAL ’60 ’ day )

AND cs1 . c s s h i p d a t e s k = d date sk
AND cs1 . c s s h i p a d d r s k = c a a d d r e s s s k
AND c a s t a t e = ’GA’
AND cs1 . c s c a l l c e n t e r s k = c c c a l l c e n t e r s k
AND cc county IN ( ’ Will iamson County ’ ,

’ Wil l iamson County ’ ,
’ Wil l iamson County ’ ,
’ Wil l iamson County ’ ,
’ Wil l iamson County ’ )

AND EXISTS
(

SELECT ∗
FROM c a t a l o g s a l e s cs2
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WHERE cs1 . cs order number = cs2 . cs order number
AND cs1 . c s warehouse sk <> cs2 . c s warehouse sk )

AND NOT EXISTS
(

SELECT ∗
FROM c a t a l o g r e t u r n s cr1
WHERE cs1 . cs order number = cr1 . cr order number )

ORDER BY count (DISTINCT cs order number )
LIMIT 100 ;

The query is split among 6 stages as follows:

• Stage 1. At stage 1 columns cs order number, cs ext ship cost, cs net profit, cs ship date sk,
cs ship addr sk, cs call center sk, cs warehouse sk are retrieved from the catalog sales
table and are saved to an intermediate file.

• Stage 2. At stage 2 column cr order number is retrieved from the catalog returns
table and the result is saved to an intermediate file.

• Stage 3. At stage 3 the order numbers of the catalog sales from the results of stage1
that are found within the order numbers from catalog returns from the results of
stage2 are selected. Finally the date dim table is retrieved and the WHERE clause
involving dates is resolved. The result of the two procedures are merged and saved
to an intermediate file.

• Stage 4. The column ca address sk from customer address table where the ca state
column value equal ‘GA’ is retrieved and saved to an intermediate file.

• Stage 5. This stage merges result of stages 3 and 4 on the condition that cs ship addr sk
(from results of stage3) = ca address sk (from results of stage4). Moreover, the
ca address sk column from the call center table where the county is one of the coun-
ties in the list ’Williamson County’, ’Williamson County’, ’Williamson County’,
’Williamson County’, ’Williamson County’. The result of the merge is then merged
with the filtered call center table.

• Stage 6. At this stage the sums of the cs ext ship cost and cs net profit on results
of stage 5.

TPC-DS 94

The query is split into 6 stages as follows:

• Stage 1. At this stage the columns needed for making the query (ws order number,
ws ext ship cost, ws net profit, ws ship date sk, ws ship addr sk, ws web site sk, ws warehouse sk)
from the web sales table are selected. The results are saved to an intermediate file
on the cloud storage.
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• Stage 2. At this stage the wr order number column from the web returns table are
retrieved and saved to an intermediate file.

• Stage 3. First it sums up the ws warehouse sk grouping the web sales table data
from the results of stage 1 by ws order number. From the results it extracts the rows
with ws warehouse sk greater than 1. Next the results are used to match stage 1
results against them based on the order number. Following up the results of this are
merged with the rows that have the d date between ’1999-02-01’ and ’1999-04-01’ in
the date dim table. The merged data is saved to an intermediate file.

• Stage 4 At this stage ca address sk column is retrieved from table customer address
where the ca state == IL. The results are saved to an intermediate file.

• Stage 5 First results of stage 3 and 4 are merged. Next the web site sk column is
retrieved from table web site where web company name = pri. The results of the
two are then merged on ws website sk = web site sk.

• Stage 6 The last stage calculates the sum of ws ext ship cost, ws net profit and
counts ws order number based on the results of stage 5.

SELECT
Count (DISTINCT ws order number ) AS ‘ order count ‘ ,
Sum( w s e x t s h i p c o s t ) AS ‘ t o t a l sh ipp ing cost ‘ ,
Sum( w s n e t p r o f i t ) AS ‘ t o t a l net p r o f i t ‘

FROM
web sa l e s ws1 ,
date dim ,
customer address ,
web s i t e

WHERE d date BETWEEN ’1999−02−01 ’ AND ( Cast ( ’1999−04−01 ’ AS DATE) + INTERVAL ’60 ’ day )
AND ws1 . ws sh ip da t e sk = d date sk
AND ws1 . ws sh ip addr sk = c a a d d r e s s s k
AND c a s t a t e = ’MT’
AND ws1 . ws web s i t e sk = w e b s i t e s k
AND web company name = ’ pr i ’
AND EXISTS

(
SELECT ∗
FROM web sa l e s ws2
WHERE ws1 . ws order number = ws2 . ws order number
AND ws1 . ws warehouse sk <> ws2 . ws warehouse sk )

AND NOT EXISTS
(

SELECT ∗
FROM web returns wr1
WHERE ws1 . ws order number = wr1 . wr order number )
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ORDER BY count (DISTINCT ws order number )
LIMIT 100 ;

The query is implemented throughout 8 stages as follows:

• Stage 1. During the first stage columns ws order number, ws warehouse sk are
retrieved from the web sales table and are saved to an intermediate file.

• Stage 2. At stage 2 an aggregation of the ws warehouse sk values is performed
grouped by the ws order number on the data resulted from stage 1. In the end,
all the rows with ws warehouse sk greater than 1 are retrieved and saved to an
intermediate file.

• Stage 3. At the third stage the columns ws order number, ws ext ship cost, ws net profit,
ws ship date sk, ws ship addr sk, ws web site sk, ws warehouse sk are retrieved from
table web sales. The result is then saved to an intermediate file.

• Stage 4. At this stage the wr order number column is retrieved from the web returns
table and the results are saved to an intermediate file.

• Stage 5. At this stage the application resolves the EXISTS subquery. Moreover,
it solves the date related part of the WHERE clause and merges the two results.

• Stage 6. During the sixth stage the ca address sk column is retrieved from table
customer address for all the rows where ca state == ’IL’.

• Stage 7. At stage 7 the results of stage 5 and 6 are merged. Moreover, the web site
table is filtered and all the rows where web company name == ’pri’ are fetched.
The two results are again merged and columns ws order number, ws ext ship cost,
ws net profit are saved to an intermediate file.

• Stage 8. At the last stage the sum for ws ext ship cost and ws net profit are calcu-
lated as well as the order numbers being counted. The calculations are made on the
results from stage 7.

TPC-DS 95

SELECT
count (DISTINCT ws order number ) AS ‘ order count ‘ ,
sum( w s e x t s h i p c o s t ) AS ‘ t o t a l sh ipp ing co s t ‘ ,
sum( w s n e t p r o f i t ) AS ‘ t o t a l net p r o f i t ‘

FROM
web sa l e s ws1 , date dim , customer address , web s i t e

WHERE
d date BETWEEN ’1999−02−01 ’ AND
(CAST( ’1999−02−01 ’ AS DATE) + INTERVAL 60 days )
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AND ws1 . ws sh ip da t e sk = d date sk
AND ws1 . ws sh ip addr sk = c a a d d r e s s s k
AND c a s t a t e = ’ IL ’
AND ws1 . ws web s i t e sk = w e b s i t e s k
AND web company name = ’ pr i ’
AND EXISTS(SELECT ∗

FROM web sa l e s ws2
WHERE ws1 . ws order number = ws2 . ws order number

AND ws1 . ws warehouse sk <> ws2 . ws warehouse sk )
AND NOT EXISTS(SELECT ∗

FROM web returns wr1
WHERE ws1 . ws order number = wr1 . wr order number )

ORDER BY count (DISTINCT ws order number )
LIMIT 100

The query is implemented throughout 8 stages as follows:

• Stage 1. During the first stage columns ws order number, ws warehouse sk are
retrieved from the web sales table and are saved to an intermediate file.

• Stage 2. At stage 2 an aggregation of the ws warehouse sk values is performed
grouped by the ws order number on the data resulted from stage 1. In the end,
all the rows with ws warehouse sk greater than 1 are retrieved and saved to an
intermediate file.

• Stage 3. At the third stage the columns ws order number, ws ext ship cost, ws net profit,
ws ship date sk, ws ship addr sk, ws web site sk, ws warehouse sk are retrieved from
table web sales. The result is then saved to an intermediate file.

• Stage 4. At this stage the wr order number column is retrieved from the web returns
table and the results are saved to an intermediate file.

• Stage 5. At this stage the application resolves the EXISTS subquery. Moreover,
it solves the date related part of the WHERE clause and merges the two results.

• Stage 6. During the sixth stage the ca address sk column is retrieved from table
customer address for all the rows where ca state == ’IL’.

• Stage 7. At stage 7 the results of stage 5 and 6 are merged. Moreover, the web site
table is filtered and all the rows where web company name == ’pri’ are fetched.
The two results are again merged and columns ws order number, ws ext ship cost,
ws net profit are saved to an intermediate file.

• Stage 8. At the last stage the sum for ws ext ship cost and ws net profit are calcu-
lated as well as the order numbers being counted. The calculations are made on the
results from stage 7.
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