Vrije Universiteit Amsterdam
VRIJE
: UNIVERSITEIT
AN° AMSTERDAM

Masters, Project Report

Understanding Datacenter Scheduler
Programming Abstractions:

Reference Architecture Design, Scheduler
Analysis, and Cost Quantification

Author: Aratz Manterola Lasa (2690722)

1st supervisor: Prof. dr. Alexandru losup
daily supervisor, if different: Sacheendra Talluri
2nd reader: Dr. Animesh Trivedi

July 4, 2023

Abstract

Datacenters are vital in our digital society, serving diverse sectors such as industry, academia,
and public institutions. To efficiently manage resources, datacenters employ sophisticated
schedulers with distinct capabilities accessed through their respective APIs. However, a
lack of clarity exists regarding the offered programming abstractions and the reasons be-
hind their selection, making it challenging to comprehend the differences and performance
implications of these APIs.

In this work, we present a thorough investigation of programming abstractions provided
by industrial schedulers, addressing their limitations and associated performance costs.
Our study proposes a comprehensive reference architecture for scheduler programming
abstractions. Firstly, we conduct an in-depth analysis of five prominent industrial sched-
ulers to identify their programming abstractions: Kubernetes, SLURM, Apache Airflow,
Condor, and Spark. Second, we analyze API extensions proposed in academic literature.
Finally, we synthesize them into a unified reference architecture. Using this architecture,
we analyze the APIs of industrial schedulers to uncover missing abstractions.

To assess the impact of these shortcomings, we evaluate the impact of extending a base-
line scheduler APIs in three different ways. We add support for resource reservation, con-
tainer migration, and storage metadata access. Our results demonstrate the performance
trade-offs incurred by using simplified programming abstractions. Notably, we reveal that
an API extension, such as container migration, can yield an 81% improvement in total
execution time per task, underscoring the significance of addressing these limitations. Our
findings enable schedulers to identify areas for improvement and provide valuable insights
for future scheduler development.

To facilitate further research and reproducibility, all relevant software and data artifacts
from our study are publicly available at https://github.com/aratz-lasa/opendc.

This work not only enhances our understanding of programming abstractions in indus-
trial schedulers but also serves as a reference for evaluating and advancing scheduler design
and development in the future.

Contents

1

Introduction 6
1.1 Research questions 7
1.2 Research methodology 8
1.3 Stakeholders and use cases 9
1.4 Thesis contribution 11
1.5 Thesis structure 11
Background 12
2.1 Workload 12
2.2 Scheduling 13
2.3 Scheduling resources 13
2.4 Programming abstraction o Lo 13
2.5 Industrial schedulers 14
2.6 Related Work 15
Analysis of the programming abstractions of industrial schedulers 17
3.1 Overview 17
3.2 Methodology 17
3.3 Main requirements Lo 18
3.4 Design principles 19
3.5 Aggregated programming abstractions analysis 19
3.6 Abstraction - Provision 20
3.7 Abstraction - Configure scheduler 27
3.8 Abstraction - Constraints 29
3.9 Abstraction - Quality of Service L oL 36
3.10 Abstraction - Manage data L. 41
3.11 Abstraction - Communicateo 45
3.12 Limitations e 49
313 Summary 49
Reference architecture of scheduling programming abstractions 50
4.1 Overviewo 50
4.2 Methodology 50
4.3 Main requirements L. Lo 51
4.4 Design principleso 52
4.5 FEmerging concepts from academia 53
4.6 Reference architecture 56
4.7 Validation through mapping of schedulers 61
4.8 Mismatch between industrial scheduler aggregated mapping and the refer-

ence architecture L 69
4.9 Limitations e 70
4.10 Summary 70
Experiments with the reference architecture 72
5.1 Selection of under-implemented scheduling APIs to experiment 72

5.2 Traceso 74

5.3 Execution 75
5.4 General requirements 76
5.5 Extension 1: Reducing VM waiting times and slowdowns using reservations 76
5.6 Extension 2: Reducing VM total times using container migrations 90

5.7 Extension 3: Reducing Data Workflows execution times using metadata access105

6 Conclusion 116

1 Introduction

Society’s increasing dependence on digital technologies and infrastructure has led to the
widespread use of datacenters for deploying various services [14, 22|. Datacenters rely on
sophisticated schedulers to efficiently manage resources and meet the demands of these
services 18, 35]. For example, today, schedulers must offer capabilities to co-locate tasks
with data [44] to reduce data transfer time between jobs over a network. Similarly, they
also provide the ability to make reservations and submit tasks in advance [43] to ensure
that there will be enough resources in the future to carry out the required computation.
However, the programming abstractions ! offered by these schedulers and their implications
on performance and user control remains a topic of interest and research.

Schedulers play a crucial role in orchestrating the allocation and execution of tasks within
datacenters. The interfaces they offer to users determine how much users can mold the or-
chestration process to support their application needs. Different schedulers provide varying
levels of programmability and control to users [37, 48, 40, 21]. On one end of the spectrum,
some schedulers provide restricted programming abstractions, aiming to minimize user in-
put and tightly control the scheduling process. On the other end, schedulers offer more
flexible interfaces, empowering users with greater control over resource allocation and job
placement [37, 48|. For example, Tetrisched [43] allows users to make reservations, and
the Energy-Credit Scheduler [27] provides an expressive API to the users for controlling
energy consumption. This discrepancy raises several questions about the impact of design
choices on performance, simplicity, and control that users can achieve.

The first question we raise about scheduler abstraction design is: What programming
abstractions are common in current schedulers? Knowledge of programming ab-
stractions in existing industrial schedulers informs designers of what is currently available
to the users. The programming abstractions available in academic research schedulers can
also suggest to designers which abstractions are necessary to incorporate the latest resource
management techniques proposed by the research community.

The second question is: What programming abstractions are sacrificed for sim-
plicity? Usually, academic schedulers offer a wide set of programming abstractions, al-
lowing the users to customize several aspects of scheduler operational behavior. On the
other hand, industrial schedulers usually implement a restricted subset for increased secu-
rity and robustness [36]. In this work, we propose a comprehensive reference architecture
for datacenter scheduler programming abstractions. This reference architecture provides a
unified framework for analyzing and comparing existing schedulers, identifying similarities,
differences, and potential shortcomings |25, 4|. By mapping various schedulers onto this
reference architecture, we can identify missing abstractions in industrial schedulers.

The third question is: What is the performance cost of the sacrificed abstrac-
tions? Despite their security and robustness benefits, simpler abstractions have a perfor-
mance cost. The performance cost is usually in the form of underutilized resources and
slow-to-complete application jobs. To shed light on this issue, we conduct three experi-
ments to quantify the performance costs of missing abstractions; we conduct experiments

1'We use programming abstraction and API interchangeably.

no-metadata A
metadata A I¢%|
0 25 50 75 100 125

Google trace total workflow time [h]
Figure 1: Performance penalty due to a missing programming abstraction: storage meta-

data access.

using real-world traces collected by major datacenter operators, such as Google and Mi-
crosoft. These experiments allow us to evaluate the impact of specific programming ab-
stractions on task runtime, data workflows, and resource utilization. By quantifying the
performance costs, we aim to provide schedulers with insights into the trade-offs associ-
ated with their programming abstractions and identify areas for improvement. Figure 1
depicts an exemplary result with the 85th percentile total execution time of tasks in a trace
from Google [45]. We consider a scheduler that implements a crucial abstraction lacking
in many industrial schedulers: metadata access to the data stored on datacenters’ object
storage service (e.g., AWS S3). Comparing it against a scheduler lacking this abstraction,
we observe a 40% reduction in total execution time when using the abstraction.

Our research contributes to the field by offering a comprehensive understanding of sched-
uler programming abstractions and their implications on performance and user control. By
providing a reference architecture and quantitative analysis of missing abstractions, we en-
able schedulers to enhance their programming interfaces and optimize resource allocation
to meet the demands of modern applications.

Establishing a common reference architecture brings several benefits. First, the reference
architecture provides a common framework for analyzing and comparing existing industrial
and academic schedulers. The comparison helps identify similarities, differences, and po-
tential shortcomings, thus enabling the assessment of different implementations and design
alternatives [4]. Second, it serves as a knowledge base for designing better schedulers that
can meet the demands of modern applications by addressing shortcomings [17, 29, 8, 4].
Finally, establishing a common reference model reduces the risk of a scheduler being spe-
cialized to the current interface by providing a view of all possible programming interfaces.
This helps avoid non-extensible designs that must be re-engineered at great development
cost, as has been the case with Condor [40] and Borg [7] when the need for a new design
arises.

In conclusion, this work aims to bridge the gap between scheduler design choices and
their impact on performance and user control. By examining the programming abstrac-
tions offered by different schedulers, quantifying their performance costs, and providing a
reference architecture, we provide valuable insights for improving scheduler designs and
advancing the field of datacenter resource management.

1.1 Research questions

This section outlines the key research questions and the approach this thesis takes to
address them. More precisely, we decompose the project into three research questions, that
that lead us to build and demonstrate the importance of a reference architecture:

RQ1 What are the programming abstractions of mainstream industrial sched-

ulers?

For building a reference architecture of scheduling programming abstractions
and analyzing what costs they impose, it is fundamental first to understand the
state-of-practice. For that, we study and model industry mainstream schedulers.

RQ2 What programming abstractions of scheduling are missing in mainstream
industrial schedulers?

For designing and building schedulers, it is necessary to clearly understand what
programming abstractions the scheduler could expose to their users. Or in other
words, what is the potential functionality of a scheduler? We design a refer-
ence architecture for scheduling programming abstractions. Once the reference
architecture is designed, we analyze the industrial schedulers and identify what
programming abstractions are missing in the industry.

RQ3 What are the costs imposed by the missing programming abstractions of
schedulers?

We hypothesize that existing schedulers have missing programming abstractions
and sacrifice performance in exchange for simplicity. Therefore, based on the
results from RQ2, we conduct experiments to prove that extending their existing
APIs can increase the scheduler’s performance.

1.2 Research methodology

In this thesis, we approach the research questions through conceptual, technical, and ex-
perimental work. All the work is based on the following two high-level philosophies:

e Fverything we do in the thesis is reasoned and justified, and if there are alternative
paths, we mention them and justify our choice.

e The problem and the solution evolve together since it is difficult to understand the
problem until you start working on the solution.

To address RQ1, we present an analysis of the programming abstractions of 5 main-
stream schedulers. We first select five mainstream schedulers by consulting experts in the
scheduling field. Next, we consult the official documents of their APIs, and methodically
we go through the entire documents, listing the different components we find in them. All
this study converges in an aggregated table where we list the main abstractions that we
identify across the five schedulers, and we use it to compare them. It is important to note
that the final result of the aggregate table evolves as we analyze the different schedulers.
As mentioned, the solution and the problem evolve together during the thesis.

In RQ2, we design a reference architecture for scheduling programming abstractions
and use it to identify shortcomings in industrial schedulers. For designing a reference
architecture, we develop our own method. We do not aim to create an optimal methodology
but rather to have a process that is justified and reasoned well enough. The method is
based on analyzing the industrial schedulers, conducting a survey of research schedulers
from academia, unifying the industrial and research schedulers, and finally, generating a
reference architecture by applying intuition and creativity to the unified design. Once the

reference architecture is developed, we validate it by mapping the five industrial schedulers
to the reference architecture. But most importantly, this mapping is used for identifying
the shortcomings of the schedulers.

To address RQ3, we perform three experiments to prove that the shortcomings identified
in RQ2 have performance costs for the schedulers. We select three shortcomings from
mapping the industrial schedulers in the reference architecture and design an experiment
for each. For every experiment, we first identify the requirements, define the system
model to narrow the scope of the experiment, list the different implementation alternatives,
specify the experiment’s configuration and design, and describe and implement prototype
software to perform the experiments. Secondly, we run the experiment using the prototype
software and gather all the necessary metrics and data. Finally, we present and analyze
the experiment results from the metrics. This includes formatting, cleaning, ordering the
experiment data, and offering an interpretation and reasoning of the results.

Everything we generate in this work is entirely open and designed so that anyone can
reproduce it. We place a lot of emphasis on providing reproducible science.

1.3 Stakeholders and use cases

To answer the research question, it is necessary to identify the stakeholders and the use
cases to address them. This way, we can identify the requirements for each research
question based on the stakeholders and the use cases.

We identify five main stakeholders of this thesis:

S1 Customers and end-users do not make use of the thesis directly, but they are the
ones that interact with the scheduler programming abstractions. So, they indirectly
affect the schedulers’ design and their programming abstractions. These are the
ones that need to use a scheduler to perform their tasks, such as analyzing data,
deploying cloud services for their users, etc. Users expect schedulers to meet specific
requirements or SLAs; when they are not satisfied, they are the most affected, and
those who claim a lack of compliance. In the end, they are the ones who guide and
make the design of scheduler APIs evolve based on their needs.

S2 datacenter providers are the ones that configure and sometimes even develop the
schedulers and, consequently, their APIs. The datacenter providers are the owners of
the resources that schedulers manage. Therefore, they are interested in the scheduler
making efficient use of resources and increasing performance metrics such as utiliza-
tion or reducing waiting times. Providers specify certain SLAs to their users, and to
comply with them, they make use of schedulers and their programming abstractions.

S3 Commercial scheduler builders are the ones who design and build the schedulers.
Those who design and choose the programming abstractions that the schedulers
implement. Therefore, they are going to be the most important stakeholders since
they are the ones that are going to make use of the results of the thesis. There are
two main cases in which they might use this thesis, specifically the resulting reference
architecture. First, when designing a new scheduler, identify which abstractions the
scheduler could offer, depending on the needs the scheduler seeks to fill. Second,

S4

S5

the reference architecture would be useful for analyzing and improving an existing
scheduler design, looking for gaps in the APIL.

Scientists research new ways to improve the management of datacenter resources,
and one of how they do this is through the design of schedulers. Therefore, it is
essential that before coming up with a new design, they understand the set of func-
tionalities that a scheduler could or should offer to users and what the API should
look like.

Students must learn what functionalities a scheduler offers to users since they are
the future engineers and scientists who are going to design or make use of sched-
ulers. Building a theoretical knowledge of schedulers and a practical experience of
the problems schedulers solve is essential to acquire this understanding. Scheduling
programming abstractions serve as introductory conceptual models and a high-level
summary of the scheduling field.

Based on the stakeholders, we devise the following use cases:

UucC1

ucC2

UucCs3

UcC4

UcCs

Optimization of jobs Scheduler users can use the thesis to understand the various
features that schedulers offer and how to leverage them to optimize the execution
of their jobs. For example, by using the reference architecture, they may identify
if their workloads have temporal patterns, they can use this insight by specifying
temporal constraints when submitting tasks or jobs to the scheduler. RQ1 addresses
this use case in Section 3 and RQ2 in Section 3.

Optimization of the utilization of datacenter resources Datacenter providers
can use the thesis to decide what programming abstractions they can offer to their
users to increase the efficiency in managing their resources. For example, using this
thesis, they can learn to leverage user-level migrations through a callback abstraction
and consequently efficiently reduce tenant interferences. This use case is addressed
by RQ2 in Section 3 and exemplified by RQ3 in Section 41.

Development and design Developers of commercial schedulers, such as Kubernetes
and Apache Airflow, can design and develop their solutions using the thesis. The
thesis gives them a general overview of what their product could offer in terms of
APIs, and then, based on their specific use case, they can choose the subset of
programming abstractions they need to implement. This use case is addressed by
RQ2 in Section 3 and exemplified by RQ3 in Section 41.

Shortcomings identification Developers of commercial schedulers like Kubernetes
and Apache Airflow may need to improve their current solutions because their users
request them or because they want to increase the features and quality of their prod-
ucts. In both cases, this thesis allows them to analyze their solutions by identifying
missing gaps in their schedulers’ programming abstractions. Consequently, they can
leverage that analysis to recognize if any missing APIs could interest their users. This
way, the thesis becomes a critical element of the evolution of commercial products.
This use case is addressed and exemplified by RQ2 in Section 3.

Research Researchers can use the thesis to investigate new ways and contexts in
which the different programming abstractions can be used to optimize performance,

10

energy efficiency, etc. In addition, the thesis allows them to conduct research and
experiments more systematically through the resulting reference architecture. This
use is exemplified by RQ3 in Sections 41.

UC6 Education Students can use the thesis to introduce themselves to schedulers since it
allows them to learn about schedulers through their APIs or abstractions, facilitating
the understanding of the context and importance of schedulers. RQ2 addresses this
use case in Section 3.

1.4 Thesis contribution
This thesis has resulted in the following disseminated materials and developed software:
1. Articles submissions.

e Article submitted to a leading peer-reviewed journal of Middleware Systems, as
the first author: A. Manterola Lasa, S. Talluri, A. Iosup, The Cost of Simplicity:
Understanding Datacenter Scheduler Programming Abstractions, Middleware,
December 2023.

e Article accepted in a leading peer-reviewed journal of Dutch Computer Sys-
tems, as the first author: A. Manterola Lasa, S. Talluri, A. Iosup, A Reference
Architecture for Datacenter Scheduler Programming, CompSys, June 2023.

e Article accepted in a leading peer-reviewed journal of Performance Engineer-
ing, as the first author: A. Manterola Lasa, S. Talluri, A. Iosup, A Reference
Architecture for Datacenter Scheduler Programming Abstractions: Design and
Experiments (Work In Progress Paper), ICPE, April 2023.

2. Published open science artifacts.

e Publicly disseminated artifacts, following the FAIR principles for scientific data
(Findable, Accessible, Interoperable, and Reusable), published on the Zenodo
Open Science platform: https://zenodo.org/record/7996281

e Free and Open Source Software (FOSS) software artifacts published on GitHub,
for inspection and reuse: https://github.com/aratz-lasa/opendc

1.5 Thesis structure

The remainder of the thesis is structured in the following way. In Chapter 2, we describe
relevant background information, and in Chapter 3, we present an analysis of the require-
ments for this work. Next, in Chapter 4, we offer an analysis of programming abstractions
of industrial schedulers. Chapter 5 is a reference architecture of scheduling programming
abstractions and a critique of industrial schedulers. In Chapter 6, we design and justify the
experiments for evaluating the costs of scheduler shortcomings. We present three different
experiments in Chapter 7. Finally, in Chapter 8, we summarize the contributions of this
thesis and propose future work that could emerge from this project.

11

2 Background

This chapter presents an overview of the topics and concepts related to scheduling and
programming abstractions.

As distributed systems become more heterogeneous over time, scheduling is one of the
most complex issues within distributed systems. Therefore, before presenting the analysis
and the shortcoming of industrial schedulers, it is necessary to understand the critical
concepts of scheduling and programming abstractions and the context of this work. To
encapsulate the context and explain the central concepts, we present a set of system models:
workload, scheduling resources, resource management and scheduling, and programming
abstractions. Lastly, we introduce five industrial schedulers, which will be used throughout
the thesis. Next, we explain each of them in detail.

2.1 Workload

The workload is executed using the resources the scheduler assigns to the user. There are
several types of workload, and in this work, we assume that all of them fit the morphology
of a workflow: a stream of jobs that are made up of one or several tasks, and there are
dependencies in the precedence between the tasks.

In the context of scheduling, there are four primary types of workflows. These types
have been defined in previous research, such as the work by Andreadis et al. [4]. In this
study, the authors provide a clear and well-defined framework for understanding modern
workflow management systems’ different types of workflows. By adopting their definitions,
we can ensure a common understanding of the different types of workflows, facilitating
communication and collaboration among researchers and practitioners.

1. Batch workflows are workloads comprising several tasks with dependencies between
them. Dependencies between tasks create precedence and can be visualized as a DAG.

2. Bag-of-tasks are jobs formed by several tasks without any dependency between
them. Therefore, there is no precedence, and they can be executed arbitrarily.

3. Long running tasks run for a very long time and are usually inside a host such as a
VM. These tasks are usually services offered by businesses, waiting for user requests.

4. Managed jobs are workloads where a manager coordinates all the tasks, such as
Spark. Normally the manager tends to be a long-running task, while the tasks she
coordinates tend to have a shorter duration.

The users request the scheduler to specify the requirements to execute the workload.
Usually, the requirements are determined by the amount of CPU and memory. However,
in some cases, other things, such as the start time, the dependencies between the tasks,
the scalability of the resources, etc., are also specified. To submit the workload require-
ments, users interact with the APIs that schedulers offer, that is, with the programming
abstractions.

12

2.2 Scheduling

A user submits a workload to use the resources through a central component, the scheduler
[32, 7]. The scheduler takes care of several tasks: finding resources to assign to the workload
based on the specified requirements, transferring the workload to the resources, starting the
execution of the workload, managing the workload through its lifecycle (from placement
to workload cleanup), and notifying to the user about lifecycle events.

Throughout the execution of a workload, the resource requirements of the workload
and the number of available resources available to the scheduler can change. Therefore,
the scheduler must adapt to changing workload requirements by increasing or decreasing
dynamically allocated resources. It does this through a subcomponent called autoscaler
[2]. At the same time, the scheduler must also preempt, recover, and migrate workloads
when the amount of available resources changes. Depending on the priorities assigned to
each workload and the type of workload, the scheduler can decide whether to preempt the
workload or migrate it to another host in the datacenter.

Schedulers can be monolithic [28] and run in a single process that handles all tasks.
They can be distributed where different tasks are split into other components, such as
the autoscaler [2]. In the same way, the scheduler and its members can be replicated in
several processes in parallel. Still, they must coordinate among themselves when assigning
resources to the workloads. In addition, schedulers can be centralized [33], where a single
entity implements the scheduler and dictates the policies and mechanisms, or it can be
decentralized |40] so that several entities implement a scheduler. Each of them has different
policies and mechanisms. When the scheduler is decentralized, the other instances must
coordinate through a common protocol and sometimes use a central matchmaker.

2.3 Scheduling resources

The workloads are executed on top of the resources that the scheduler manages. Resources
are physical machines, usually within a datacenter. In the datacenter, there are several
clusters with several hosts each, and each host is a node in a rack. Hosts are heteroge-
neous, offering different amounts and types of resources. Each host virtualizes its resources
in VMs or containers through a hypervisor and runs multiple independent workloads si-
multaneously.

In this work, we model the resources of a host as the combination of CPU, memory RAM,
and storage. CPUs can have different frequencies and amounts of core. And memory and
storage can have different sizes. We model the resource consumption in a discretized way,
where the workload reports at each time step how many resources it has consumed, and the
hypervisor consolidates the consumption of the different workloads through a fair-sharing
policy.

2.4 Programming abstraction

Schedulers offer a set of programming abstractions for users to interact with. Programming
abstractions are the API offered by schedulers and are the language by which the user sub-
mits workloads and modifies the workload’s requirements during the workload’s life cycle.

13

This is the central concept studied in this work. Programming abstractions are offered
through a GUI, CLI, or a protocol such as HT'TP. Users must identify themselves before
performing any operation and provide a form of payment for the resource consumption of
their workloads.

Programming abstractions can be imperative, declarative, or a mixture. Usually, when
the language is imperative, programming abstractions offer programmability to perform
a specific action on the workload. When declarative, they offer reconfigurability to alter
the state of the workload. Besides programmability and configurability, schedulers offer
observability over the underlying workload or resources. We explicitly exclude observabil-
ity from this work, as it is not a direct interaction between the user and the scheduler.
However, it is important to note that observability is an indirect form of exchange since it
improves the user’s decision-making and consequently influences their use of programming
abstractions. For example, you might decide to reduce the resource requirements of the
workload if you find that utilization is very low.

2.5 Industrial schedulers

In Section 3, we analyze five industrial schedulers: Kubernetes, SLURM, Apache Airflow,
Condor, and Spark. Therefore, we first introduce them and provide a short overview of
each.

Kubernetes, also known as k8s, is a cluster management and container orchestration
software for automating deployment, management, and scaling. In a typical scenario, Ku-
bernetes is deployed on top of VMs in a datacenter. It is the most popular orchestration
software, and it is used in all fields, from data analytics to machine learning applications.
Kubernetes focuses on orchestration. However, orchestration and scheduling are interre-
lated. Orchestration leverages scheduling features for finer coordination and deployment.
Consequently, Kubernetes exposes a rich set of scheduling programming abstractions to its
users.

We analyze the programming abstractions by consulting https://kubernetes.io/do
cs.

SLURM is a cluster management and job scheduling software that runs on 60% of the
TOP500 supercomputers as the resource manager [33|. It has three main functions: allocate
access to resources to users, provide a framework for starting, executing, and monitoring
jobs, and arbitrating contention to resources. Therefore, SLURM is considered a scheduler
and exposes scheduling programming abstractions to their users for implementing these
essential functions.

We analyze the programming abstractions by consulting https://slurm.schedmd.com/
documentation.html.

Spark is a large-scale data analytics processing system that manages clusters with im-
plicit data parallelism and fault tolerance. Spark’s architecture is based on the resilient
distributed dataset (RDD), a collection of read-only data partitions distributed among ma-
chines on a cluster. Spark is not directly considered a scheduler, but it exposes scheduling
programming abstractions to users for high performance on data analytics. The abstrac-

14

tions mainly focus on optimizing resource usage for data management, but they also offer
more basic abstractions, such as provisioning and monitoring.

We analyze the programming abstractions by consulting https://spark.apache.org/d
ocs/latest/.

Condor is a resource management system for compute-intensive jobs designed for the
Grid. It can schedule within a single private cluster and in a global grid across multiple
authorities and locations. Condor implements a powerful model where resource consumers
are matched with resource owners, avoiding multiple queues for submitting jobs with dif-
ferent requirements. Despite not being the most popular scheduler commercially, it is one
of the most potent and essential designs in the field due to its sophistication.

We analyze the programming abstractions by consulting https://htcondor.readthedo
cs.io/en/latest, and [40].

Apache Airflow is a software for scheduling and monitoring workflows. It lets users
specify tasks and their dependencies by constructing fine-grain DAGs, where each node
represents a task. The workflows are not limited to a specific domain, but it allows to
build of pipelines for anything, from Machine Learning models to data transfers. Both the
definition of the DAG workflows and all the other functionalities related to the scheduling
of the tasks are specified and controlled programmatically through Python code.

We analyze the programming abstractions by consulting https://airflow.apache.org
/docs.

2.6 Related Work

In the field of scheduling, various conceptual models and reference architectures have been
proposed to understand the internal workings of schedulers. Schopf’s multi-stage model of
the grid scheduling process [25], the Global Grid Forum [20], and the datacenter scheduler
reference architecture [4] provide valuable insights into the overall scheduling process. How-
ever, these models primarily focus on the internal aspects and lack a detailed exploration
of the external-facing components, specifically the programming interface.

Several conceptual models of APIs have been introduced for different computing envi-
ronments, such as grid computing and cloud computing. Foster et al. presented a reference
architecture for grid computing [17], and the National Institute of Standards and Technol-
ogy (NIST) introduced models for cloud computing [29]. While these models offer valuable
guidance for designing APIs within their respective domains, they do not address the spe-
cific API requirements of schedulers like Spark and Kubernetes. These schedulers have
unique characteristics and demands that call for dedicated attention to their programming
interface design.

Recent efforts have focused on developing schedulers that integrate multiple scheduling
abstractions into a unified system. Projects like Ghost [23] and ESCHER [5] aim to
provide advanced scheduling capabilities. Ghost enables users to have greater control over
the scheduling process by delegating OS kernel scheduling decisions to them. It offers
mechanisms to implement multiple scheduling policies, but it does not support different
implementations of the scheduler mechanisms themselves. On the other hand, ESCHER

15

allows users to express arbitrary scheduling constraints as resource requirements, enabling
fine-grained control over resource allocation. While ESCHER focuses on resource allocation
given constraints, it does not address the modeling of complex interactions between users,
resources, and the scheduler.

In contrast to the existing work, our research complements these efforts by specifically
addressing the external-facing aspects of scheduling, emphasizing the design and implemen-
tation of programming abstractions in schedulers. By exploring the unique requirements
and characteristics of schedulers like Spark and Kubernetes, we aim to provide a compre-
hensive reference architecture that facilitates efficient and user-friendly scheduling.

16

3 Analysis of the programming abstractions of industrial sched-
ulers

What are the programming abstractions of mainstream industrial schedulers? To answer
this question, it is necessary to model the state of the industry on scheduler APIs. The
analysis will make us understand the current programming abstractions and let us study
whether they are sufficient and what features they may be missing.

Based on our experience and consulting expert knowledge in the scheduling field, we
identified and selected a group of 5 industrial schedulers. We consider the selected sched-
ulers to represent the broader set of schedulers available in the industry. The group of
schedulers is formed by: Kubernetes (v1.27) [3], SLURM (v23.02) 28], Spark (v3.4.0) [46],
Condor (v10.4.3) [40], and Airflow (v3.3.0) [1]

3.1 Overview

First, we explain the methodology used for the analysis, the requirements, and the design
principles. Next, we present a table where we unify and aggregate all the programming
abstractions we identify in the industry and analyze which schedulers implement the dif-
ferent abstractions. This offers a clear view of which programming abstractions industrial
schedulers implement and which ones they miss. Then, we explain how each scheduler
implements the identified abstractions. In this way, we compare different alternatives to
implement the same abstraction, and at the same time, we justify that the schedulers ex-
ecute the aforementioned programming abstractions. Lastly, we explain the limitations of
this analysis of industrial schedulers.

Our contribution is composed of multiple items:

1. We describe the methodology we follow to analyze the state of the industry (Section
3.2).

2. We analyze the requirements for the analysis (Section 3.3).
3. We specify the design principles for the analysis (Section 3.4).

4. We present an aggregated analysis of the industrial schedulers’ programming abstrac-
tions (Section 3.5).

5. We explain the limitations of the analysis (Section 3.12).

3.2 Methodology

Before carrying out the analysis of scheduling programming abstractions, we define a
methodology that we follow. We keep the process flexible because we are in the early
stages of the work, and the problem and the solution are still evolving. However, we define
a list of high-level steps that allow us to structure and limit the analysis:

1. Analysis of requirements and design principles. First, we identify the require-
ments of the reference architecture and the design principle by which we will guide

17

and evaluate both the design and the result. This allows us to justify and reason the
reference architecture formally.

2. List programming abstractions: For each scheduler, we walk through the speci-
fications of its APIs in the sources identified in the previous section. We list all the
actions the API offers users, noting a short explanation and concrete examples.

3. Create diagrams to the group and relate concepts: For each scheduler, we
convert the list of API actions to a diagram in which we group the related concepts.

4. Unify concepts across schedulers: We unify the different words and concepts
identified in each scheduler to use the same terminology and groupings.

5. Aggregate results: We aggregate the different concepts and groupings identified
in the schedulers to a single table, listing the categories and the images within each
category.

3.3 Main requirements

To analyze the state of the industry of scheduling programming abstractions, we first
identify the requirements that must be met. To specify the requirements. Below we list
the functional and non-functional requirements that guide the analysis.

We identify two functional requirements:

FR1 Model existing industrial schedulers. For the thesis to impact the real world,
working with popular schedulers in the industry is necessary. Since these are the
market leaders and the ones that have the greatest impact, it is necessary to model the
current mainstream schedulers since these models offer the user a clear understanding
of the APIs offered by each scheduler in the industry and be able to compare and
analyze them.

FR2 Expand the problem and the solution towards a reference architecture.
In addition to offering a high-level overview of the abstractions provided by sched-
ulers, this analysis is also a first step toward designing a reference architecture for
scheduling programming abstractions. The problem and the reference architecture
design are still evolving in this step. Therefore, the analysis of industrial schedulers
should expand knowledge on how to design the reference architecture, in turn begin-
ning to show where there may be shortcomings in industrial schedulers and which
abstractions are relevant for identifying differences between schedulers.

We identify one non-functional requirement:

NR1 Simplicity. The analysis is aimed at a broad group of stakeholders, from university
students to industrial computer engineers. Therefore, the study’s results should be
presented clearly so stakeholders can easily understand and interpret the analysis
results.

18

3.4

Design principles

In addition, to carry out the specified steps in the methodology, we follow two design

principles:

P1

P2

3.5

Avoidance of concept types. The analysis serves to understand what existing
schedulers offer in the industry. For that, it is essential to keep the analysis design
simple and avoid creating different types of concepts when modeling the APIs. We
do not differentiate the actions from the inputs that the actions receive, such as
the lease action and the resource requirements specified in the lease. The two are
essential concepts, so we keep the two separate but at the same level in the model.
In addition, the analysis also serves to explore and build a vision for the reference
architecture. That is why it is essential not to be tied to any specific framing or
approach in this analysis and, to do so, not to model different types.

Grouping of related concepts. Several concepts are related to each other. There-
fore, to facilitate comprehension, related abstractions are grouped. This allows de-
velopers to use these groupings to design the scheduler architecture and students to
simplify the establishment of their knowledge.

Aggregated programming abstractions analysis

In Table 1, we present the summary of the programming abstractions that industrial sched-
ulers implement, identifying which abstractions each scheduler implements. Analyzing the
industrial schedulers, we identify 21 programming abstractions and group them into six
general categories context for the functionality of each abstraction. In the following sec-
tions, we describe the different abstractions and explain which schedulers implement them
and how they do them.

19

Table 1: Aggregated analysis of scheduling programming abstractions from industrial
schedulers.

Schedulers

Programming abstractions Sp Co

lease / release
scale

preempt
recover

Provision

scheduling policy

Configure scheduler scheduling frequency

space constraints
time constraints
affinities
task dependencies
priorities

QoS group quotas
exclusivity

Constraints

access input data

replicate
Manage data partition

recover

signal
stdin
callback

Communicate

000 CCC0000C 000 00000
00 CCCe0000 000000 0"
L XoNOIl X X X JIoXK X X NoXoX JIoX X JeX X |
O X I JoRoX JIoX X I NoX X I JoIr X JoN)
[JoNolloNONON JIoNOoN ¥ NOX X I NOIf NONON Jke

Legend: @/O = full/no match; Ku = Kubernetes; Sl = SLURM; Sp = Spark; Co =
Condor; Ai = Airflow.

3.6 Abstraction - Provision

In this section, we present the abstraction for the provisioning of resources. This is the
main and most basic abstraction of scheduling since it is by which resources are acquired
and managed.

3.6.1 Lease / Release

Lease is the main abstraction within provisioning, which is the assignment and activation
of resources. All schedulers offer this abstraction since it is the most basic scheduling
operation. However, each scheduler provisions different execution units.

Kubernetes provisions containers encapsulated into pods and jobs by submitting a
YAML file that describes the containers. Here is an example of a YAML file that de-
scribes a pod:

20

10

11

12

13

apiVersion: apps/vl
kind: Deployment
metadata:
name: example-deployment
spec:
template:
metadata:
labels:
app: example
spec:
containers:
- name: example
image: example:1.28

A deployment named example-deployment is created in this example, indicated by the
.metadata.name field. The template field contains the description of the pod. The Pods
are labeled app:example using the .metadata.labels field. The Pod template’s specification,
or .template.spec field, indicates that the Pods run one container, example, which runs the
example container image at version 1.14.2.

In case the file is saved as example.yaml, the command to submit the file and perform
the provisioning is:

kubectl apply —f example.yaml

SLURM provisions jobs by running a CLI command and passing arguments to it. It does
not require a file to describe what is being provisioned. Here is a specific example:

sbatch —job-mname=example run.sh

In this example, the command sbatch submits a batch script to SLURM. the job-name
parameter specifies a name for the job lease. The specified name and the job ID number
will appear when querying running jobs on the system. Lastly, run.sh specifies the script’s
name that is submitted.

Spark provisions applications by running a CLI command. Here is a specific exam-
ple:
./ bin/spark—submit

——class org.apache.spark.examples.SparkPi

—master spark://207.184.161.138:7077
/path/to/examples. jar

In this example, the class argument specifies the entry point for the application that is
org.apache.spark.examples.SparkPi. The entry point refers to the spark backend executable

21

10

11

13

that reads and runs the user application. The argument master specifies the Spark master
URL for the cluster that is spark://23.195.26.187:7077. The master is the process that
requests resources in the cluster and makes them available to the Spark backend. And
lastly, the path /path/to/ezamples.jar to a bundled jar, including the user application and
all dependencies.

Condor submits a descriptive file to containers, VMs, and jobs. Here is a specific exam-
ple:

executable = example
arguments = SomeArgument
queue

In this example, it queues the program example with the arguments SomeArgument for
execution somewhere in the pool. The queue statement tells Condor that the user is done
describing the job and to send it to the scheduler queue for processing.

In case the file is saved as submiterample, the command to submit the file and perform
the provisioning is:

condor_ submit submitexample

Airflow provisions workflows by specifying a Python script. Here is an example of sub-
mitting a workflow:

from datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator

def example():
return 'Hello world from first Airflow DAG!'

dag = DAG('hello_world', description='Hello World DAG')

example_operator = PythonOperator(task_id='example_task',
< python_callable=example, dag=dag)

example_operator

In case the file is saved as submiterample, the command to submit the file and perform
the provisioning is:

airflow tasks run example\ operator example\ task

22

10

11

12

13

14

15

16

17

18

3.6.2 Scale

Scale is the abstraction that specifies the resources scaling plans for automating how
they respond to changes in workload or demand.

Kubernetes offers scaling abstractions via horizontal pods autoscalers, which allow users
to specify scaling policies for containers via YAML configurations by setting the load at
which the scaling is triggered. Here is a specific example:

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: example
spec:
scaleTargetRef:
apiVersion: apps/vl
kind: Deployment
name: example
minReplicas: 1
maxReplicas: 10
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 50

In this example, with this metric, Kubernetes will keep the average utilization of the
pods in the scaling target at 60%. If the utilization moves up or down from the specified
target, Kubernetes provisions more or fewer containers within the range specified by the
mazReplicas and minReplicas arguments, that is, between 1 and 10.

Spark also allows users to specify scaling for the application. Still, instead of selecting
a triggering load, users select the minimum and maximum resources that applications can
vary and other secondary configurations, such as the initial set of resources. The scaling
is specified through a configuration file. Here is a specific example:

./ bin/spark—submit
—class org.apache.spark.examples.SparkPi
—master spark://207.184.161.138:7077
——conf spark.dynamicAllocation.enabled=true
——conf spark.dynamicAllocation.minExecutors=1
——conf spark.dynamicAllocation.maxExecutors=10
/path/to/examples. jar

In this example, three configuration parameters are set. First, the

23

spark.dynamicAllocation.enabled flag is set to true, indicating the use of dynamic resource
allocation, which scales the number of executors registered with this application up and
down based on the workload, where executors are the worker nodes that help in run-
ning individual tasks by being in charge of a given spark job. Then, the parameters
spark.dynamicAllocation.minEzxecutors and spark.dynamicAllocation.maxEzrecutors specify
the lower and upper bound for the number of executors.

SLURM, Condor and Airflow do not provide the scaling abstraction.

3.6.3 Preempt

Preempt is the abstraction that specifies the abortion of execution or assignment of a user
scheduler, putting it back in the scheduler queue.

Kubernetes provides the preemption abstraction implicitly. When users submit con-
tainers based on their priorities (if any), Kubernetes may decide to preempt lower-priority
pods. First, users create priority groups (classes), they specify the policy for preempting,
and second, assign the priority class to the containers. Here is a specific example:

apiVersion: scheduling.k8s.io/vl
kind: PriorityClass
metadata:
name: high-priority-preempt
value: 1000000
preemptionPolicy: PreemptLowerPriority

This example creates a priority class with the name high-priority-preempt. The numeric
priority value is set to 1000000 through the parameter value, and the preemptionPolicy
parameter is set to PreemptLowerPriority, which specifies that pods of this PriorityClass
will preempt lower priority pods if necessary. Then it is required to apply the priority class
to the containers that are submitted:

apiVersion: vl
kind: Pod
metadata:
name: example
spec:
containers:
- name: example
image: example:1,28
priorityClassName: high-priority-preempt

In this example, the container is assigned the priority class high-priority-preempt by
setting the parameter priorityClassName so that when this container is submitted, it will
preempt lower priority containers if there are no free resources.

24

10

11

12

SLURM offers preemption logic similar to Kubernetes. It allows preempting jobs based
on the assigned priorities and the configuration. When a high-priority job is allocated
resources already allocated to other jobs of lower priority, the low-priority jobs are pre-
empted. Here is a specific example of the configuration:

PreemptType=preempt/qos
PreemptMode=REQUEUE

In this example, the PreemptType argument is set to preempt/qos, which specifies that job
preemption occurs based on the numeric priority of the jobs. Also, the PreemptMode is set
to REQUEUE, which specifies that the scheduler preempts jobs by queuing them if possible,
and otherwise, it cancels them. Then, for the preemption to occur, the resources must be
busy, and the user has to submit a higher-priority job than those currently submitted.

In case the file is saved as slurm.conf, the file must be placed in the special folder where
SLURM looks up for configuration.

Condor offers preemption abstraction, but in a different way than Kubernetes and
SLURM. Instead of implicitly implementing it, it does so explicitly, offering a command
to preempt to the user. Here is a specific example:

condor vacate job 23

In this example, finds job 23 from the Condor job queue and vacate it from the host(s)
where it is currently running. The job remains in the job queue and returns to the idle
state.

Spark, and Airflow do not provide the preempt abstraction.

3.6.4 Recover

. Recover is the abstraction for recovering the execution of a job after a failure by restarting
the execution or putting it back into the scheduler queue.

Kubernetes allows specifying restart on failure policies. Here is a specific example:

apiVersion: apps/vl
kind: Deployment
metadata:
name: example-deployment
spec:
template:
metadata:
labels:
app: example
spec:
restartPolicy: OnFailure
containers:

25

13

14

- name: example
image: example:1.28

In this example, the restartPolicy is set to OnFuailure, which specifies that the container
must be restarted automatically in case it exits with a failure code.

SLURM | instead of performing automatic restarts, it allows to requeue a failed job via
a flag. It returns the failed task to the scheduling queue instead of restarting it on the
same machine. Here is a specific example:

sbatch —job-name=example —requeue run.sh

In this example, the requeue flag specifies that the task must be submitted to the schedul-
ing queue after it finishes.

Spark offers the same abstraction as Kubernetes; users can specify automatic restart
)
policies in case of failures. Here is a specific example:

./ bin/spark—submit
—~class org.apache.spark.examples.SparkPi
—master spark://207.184.161.138:7077
——supervise
/path/to/examples. jar

In this example, the flag supervise is passed when submitting the app, and consequently
Spark restarts the application automatically if it exits with a non-zero exit code.

Condor offers automatic restarts by specifying the maximum number of retries to be
performed to run a failed execution. That is, unlike the other schedulers, it can restart on
failure, but a limited number of times, and without being able to specify any policy. Here
is a specific example:

executable = example
arguments SomeArgument

max_retries = 5

queue

In this example, the max_retries argument is set to 5, which tells Condor the maxi-
mum number of times to restart the job from scratch, if a job exits with a non-zero exit
code.

Airflow is similar to Condor, it offers automatic restarts, by specifying the maximum

number of retries to be performed to run a failed execution. Here is a specific exam-
ple:

26

10

11

12

13

14

15

16

17

18

from datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator

def example():
return 'Hello world from first Airflow DAG!'

default_args = {
5,

'retries':

}
dag = DAG('hello_world', description='Hello World DAG',
< default_args=default_args)

example_operator = PythonOperator(task_id='example_task',
— python_callable=example, dag=dag)

example_operator

In this example, the retries argument is set to 5 and is passed as default args to the
DAG, which tells Airflows the maximum number of times to restart the task, if a task exits
with a non-zero exit code.

3.7 Abstraction - Configure scheduler

In this section, we explain the scheduler configuration abstraction. This abstractions family
specifies the configuration of the behavior of the scheduler. This abstraction is necessary
for the tuning of the scheduler to better adjust to the users’ workload and the datacenter’s
environment.

3.7.1 Scheduling policy

. The configuration of the scheduling policy specifies the set of rules and objectives that
guides the scheduler in its decisions. The policies promote or de-emphasize factors like busi-
ness priorities and customer preferences when provisioning resources among simultaneous
requests.

Kubernetes breaks the scheduling algorithm into different steps and allows configuring
the policy for each of these steps using plugins. Here is a specific example:

apiVersion: kubescheduler.config.k8s.io/v1
kind: KubeSchedulerConfiguration
profiles:

- plugins:

27

score:
enabled:
- name: MyCustomPluginA
- name: MyCustomPluginB

In this example, two plugins MyCustomPluginA and MyCustomPluginB are submitted
to the scheduler, which is used for scoring the candidate nodes. These plugins provide a
score to each node that is a candidate to be provisioned for a container. The scheduler will
then select the node with the highest weighted score sum.

In case the file is saved as config.yaml, the command to apply the scheduler configuration
is:

kube—scheduler —config config.yaml

SLURM allows to choose between two different policies, backfill scheduling or strict
priority order. Here is a specific example:

SchedulerType = sched/backfill

In this example, the argument SchedulerType is set to sched/backfill, which specifies the
scheduler to use the backfill scheduling policy.

If the file is saved as slurm.conf, the file must be placed in the particular folder where
SLURM looks up for configuration.

Spark only allows users to choose between two policies, fair scheduling or fifo. Here is a
specific example:

./ bin/spark—submit
——class org.apache.spark.examples.SparkPi
—master spark://207.184.161.138:7077
——conf spark.scheduler.mode=FIFO
/path/to/examples. jar

In this example, the configuration flag spark.scheduler.mode is passed with value FIFO,
specifying the requests are processed in FIFO order.

Condor and Airflow do not provide the scheduling policy abstraction.

3.7.2 Scheduling frequency
. The configuration of the scheduling frequency specifies the frequency at which the sched-

uler is activated and processes the incoming requests.

SLURM allows users to configure the scheduling frequency through parameters of a
configuration file. Here is a specific example:

sched_interval = 60

28

In this example, the sched interval argument is set to 60, which specifies how frequently,
in seconds, the main scheduling loop will execute and try to schedule all pending jobs.

If the file is saved as slurm.conf, the file must be placed in the special folder where
SLURM looks up for configuration.

Airflow | like SLURM, allows users to specify the frequency through an argument of a
configuration file.

[scheduler]
scheduler_idle_sleep_time = 5

In this example, the argument scheduler idle sleep time is set to 5, which controls how
long, in seconds, the scheduler will sleep between loops if there is nothing to do in the loop.
i.e. if it schedules something, then it will start the next loop iteration straight away.

In case the file is saved as airflow.cfq, the file must be placed in the special folder where
Airflow looks up for configuration (in your SAIRFLOW _HOME).

Kubernetes and Spark do not provide the scheduling frequency abstraction.

3.8 Abstraction - Constraints

In this section we present the abstraction of constraints, which specify temporal and
physical constraints for scheduling, absolute to the physical world, or relative to other
scheduling events and concepts. These abstractions are necessary to identify the resources
you want to provision and on which you want to run the user workloads.

3.8.1 Space constraints

. Space constraints specify physical constraints of a job. They can be hard constraints,
which do not allow to schedule unless they are met, or soft constraints in which a best-effort
is made to meet them.

Kubernetes allows users to specify the resource requirements. In Kubernetes, nodes
have tags assigned, and then users can specify to schedule the containers only in nodes
with specific labels. Here is a specific example:

apiVersion: vl
kind: Pod
metadata:
name: example
spec:
containers:
- name: example
image: example:1.28
resources:

limits:

29

11

12

13

nvidia.com/gpu: 1
nodeSelector:
accelerator: nvidia-tesla-p100

In this example, the container below selects nodes with the label accelerator=nvidia-
tesla-p100, which specifies that the node where the container is provisioned must contain
a specific graphics processing unit.

SLURM offers the ability to specify resource requirements through parameters of a CLI,
and it can also be limited to specific nodes. Here is a specific example:

sbatch —job-—name=example —constraint="gpu" run.sh

In this example, the parameter constraint is set to gpu, which specifies the job must be
run on top of nodes that have a Graphics Processing Unit.

Spark offers the ability to specify the requirements of the application. Here is a specific
example:

./ bin/spark—submit
——class org.apache.spark.examples.SparkPi
—master spark://207.184.161.138:7077
—conf spark.executor.memory=2G
——conf spark.executor.cores=l1
/path/to/examples.jar

In this example the configuration flag spark. executor.memory is set to 2G, specifying that
the amount of memory to use per executor process is 2 Gigabytes, and spark.ezecutor.cores
is set to 1, specifying that the amount of cpu cores to use per executor process is one.

Condor offers great flexibility through list of attribute-value pairs called ClassAds, in
which users can specify any arbitrary physical constraint. ClassAds are a flexible mecha-
nism for representing the characteristics and constraints of machines and jobs in the Condor
system. The following shows ten attributes, a portion of an example ClassAd:

executable = example
arguments SomeArgument

requirements = (Memory == 128) && (Cpus == 8)

queue

In this example, the argument requirements is set, so that the amount of memory and
cpu number is specified. Condor allows to specify ClassAd boolean expressions, in which
any desired feature can specified as a requirement.

30

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Airflow the resources of the task are specified through code, and users can also specify
where the task is executed. Here is a specific example:

from datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator

def example():
return 'Hello world from first Airflow DAG!'

default_args = {
'retries': b5,

}

dag = DAG('hello_world', description='Hello World DAG',
— default_args=default_args)

example_operator = PythonOperator (
task_id='example_task',
python_callable=example,
dag=dag,
resources={
'request_memory': '56G',
'request_cpu': '4',

}’

example_operator

In this example, the main task that is a PythonOperator sets the resources parameter,
where the physical constraints are specified. In this case, the memory amount and the
number of CPUs are specified. The parameter request memory is set to 5G, specifying
that the amount of memory to use per executor process is five Gigabytes, and request cpu
is set to 4, specifying that the amount of cpu cores to use per executor process is four.

3.8.2 Time constraints

. Time constraints specify the temporal constraints of a job, including recurrent patterns,
start times, and maximum runtimes. They can be hard constraints, which do not allow to
schedule unless they are met, or soft constraints in which the best effort is made to meet
them.

Kubernetes offers cron jobs, which allow submission jobs along with a cron specification.
Cron is a specification to run periodically at fixed times, dates, or intervals. This allows

31

10

11

12

13

users to specify recurring temporal patterns. Here is a specific example:

apiVersion: batch/v1
kind: CronJob
metadata:
name: example
spec:
schedule: "x *x *x x x"
jobTemplate:
spec:
template:
spec:
containers:
- name: hello

image: example:1.28

In this example, the CronJob manifest prints the current time and a hello message every
minute. The .spec.schedule field is required. The value of that field follows the Cron syntax.
For example, 0 0 13 * 5 states that the task must be started every Friday at midnight, as
well as on the 13th of each month at midnight.

In case the file is saved as example.yaml, the command to submit the file and perform
the provisioning is:

kubectl create —f example.yaml

SLURM allows to submit a request together with a desired start time instead of a
recurring cron job. Here is a specific example:

sbatch —job-mname=example —begin=2010—01—-20T12:34:00 run.sh

In this example, the argument begin specifies the date and time the job must be provi-
sioned and run.

Condor provides the abstraction of job deferrals, that is, the ability to specify a deferral
time when users want to provide the resources. Here is a specific example:

executable example

SomeArgument

arguments

deferral_time = 1136138400

queue

In this example, the job’s submit description file specifies in Unix epoch that the job will
begin execution on January 1st, 2006, at 12:00 pm.

32

10

11

12

13

14

15

16

17

18

Airflow lets users specify cron jobs and limit runtimes, but also, users can specify specific
dates and times to run their jobs without having to be recurring as in cron. Here is a specific
example:

from datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator

def example():
return 'Hello world from first Airflow DAG!'

dag = DAG('hello_world', description='Hello World DAG')
default_args = {

'start_date': datetime (2015, 12, 1),
'schedule_interval': 'Ghourly',

example_operator = PythonOperator (task_id='example_task',
< python_callable=example, dag=dag, default_args=default_args)

example_operator

In this example, the start date argument is set to 2015-12-01 and is passed as de-
fault _args to the DAG, which tells Airflows the time at which the workflow must start
running. Together with the starting date, the schedule interval argument is set tohourly,
specifying the workflow must be run every hour.

3.8.3 Affinities

Affinities specify constraints relative to other jobs. In other words, a way to specify
the characteristics of other scheduling units that run on the same physical resources. For
example, that the HT'TP server to be assigned to the same node where a certain database
is running.

Kubernetes implements affinities through tags, so that users assign tags to their pods
(containers), and later they can specify which tags the other pods of the node should have,
as well as which tags to avoid. Here is a specific example:

apiVersion: vl
kind: Pod
metadata:
name: example
spec:
containers:
- name: example

33

10

11

12

13

14

15

16

18

19

20

21

image: example:1.28
resources:
limits:
nvidia.com/gpu: 1
affinity:
podAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
podAffinityTerm:
labelSelector:
matchExpressions:
- key: server
operator: In
values:
- http

In this example, the user specifies that the container must be deployed in a node that
has other containers running, which have the tag server set to http. For that specifies
the key and the walue for the key that is looking for. The affinities are specified in the
affinity. pod Affinity field. This causes the container to run on the same node that the HT'TP
server runs on.

Condor has the potential of providing abstractions for affinities, due to the flexibility
of the ClassAd. However, the default implementation it does not process affinity requests,
since the machine does not collect and later expose the ClassAds of the running jobs.
Therefore, it is not possible to specify constraints depending on the characteristics of other
running jobs.

3.8.4 Task dependencies

. Task dependencies abstraction specifies the relationships in which a task or milestone
relies on other tasks to be performed (completely or partially) before it can be per-
formed.

Kubernetes does not offer the abstraction of task dependencies. The closest is the
abstraction of a job, which creates one or more Pods and will continue to retry execution
of the Pods until a specified number of them successfully terminate.

SLURM allows to specify, through a CLI parameter, the dependencies of the jobs that
must be completed before. Here is a specific example:

sbatch —job-—name=example —dependency afterok:20:21,afterany:23
run . sh

In this example, the dependency parameter is set, which specifies that the job can run
only after a 0 return code of jobs 20 and 21 and the completion of job 23.

34

Spark provides the API for setting dependencies between tasks implicitly, since the code
commands are executed sequentially, and this allows the generation of workflows. Here is
a specific example:

text_file = sc.textFile("hdfs://...")
counts = text_file.flatMap(lambda line: line.split(" "))
.map(lambda word: (word, 1))
.reduceByKey(lambda a, b: a + b)
counts.saveAsTextFile("hdfs://...")

In this example, a few datatset transformations are performed to build a dataset of
(String, Int) pairs called counts and then save it to a file. The reading and writing of the
file is run as a single task, but the flatMap, map and reduceByKey operations are run in
a distributed manner, so each of them are mutiple tasks. Therefore, this code represents
and acts as a workflow of several tasks.

Condor offers a framework called DagMAN, which allows users to explicitly define work-
flows in a configuration file, representing them as Directed Acyclic Graphs. Here is a specific

example:

JOB A A.condor
JOB B B.condor
JOB C C.condor
JOB D D.condor
PARENT A CHILD B C
PARENT B C CHILD D

In case the file is saved as example.dag, the command to submit the workflow and perform
the provisioning is:

condor submit dag example.dag

Airflow offers an explicit way to define DAGs to generate workflows with multiple task
dependencies. But unlike Condor, Apache Airflow’s DAGs are represented by code. Here
is a specific example:

from datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator

def example():
return 'Hello world from first Airflow DAG!'

dag = DAG('hello_world', description='Hello World DAG')

35

11

12

13

14

15

16

first_task = PythonOperator(task_id='example_task_1',
< python_callable=example, dag=dag)

second_task = PythonOperator(task_id='example_task_2',
— python_callable=example, dag=dag)

third_task = PythonOperator(task_id='example_task_3',
< python_callable=example, dag=dag)

first_task >> [second_task, third_task]

In this example, three tasks are defined and then with the » operator the dependencies
between them are specified. In this case, the second and third task are executed after first
task’s completion.

3.9 Abstraction - Quality of Service

. In this section we present the abstraction of the quality of service, which specifies the
distinction of priorities for scheduling and execution of resources.

3.9.1 Priorities

. Priorities specify the levels of importance for jobs when it comes to assigning resources

or having to reduce them.

Kubernetes provides priorities using PriorityClass, which assigns numeric values repre-
senting priorities to containers. Here is a specific example:

apiVersion: scheduling.k8s.io/vl
kind: PriorityClass
metadata:
name: high-priority
value: 1000000

In this example, a priority class is defined. metadata.name parameter defines the name
of the priority, and the value parameter specifies the numeric value of the priority. After
the PriorityClass is defined, we specify the PriorityClass in the pod’s specification:

apiVersion: apps/vl
kind: Deployment
metadata:
name: example-deployment
spec:
template:
metadata:
labels:
app: example

36

10

11

12

13

14

15

spec:
restartPolicy: OnFailure
containers:
- name: example
image: example:1.28
priorityClassName: high-priority

In this example, the priorityClassName is set to high-priority, which specifies that the
pod is high priority.

SLURM | in the same way to Kubernetes, when submitting a task users can assign a
numeric priority through the parameters. Here is a specific example:
sbatch —job-—name=example —priority=5 run.sh

In this example, the priority argument is set to 5, which specifies the job has a numeric
priority of 5.

Spark allows to group tasks into pools, and then assign a numeric priority to the pool,
but it does not assign priorities to individual tasks. Here is a specific example:

<?xml version="1.0"2>
<allocations>
<pool name="pool-1">
<weight>1</weight>
</pool>
<pool name="pool-2">
<weight>2</weight>
</pool>
</allocations>

In this example, an XML file is created where two pools are defined. For each of the
pools, the weight argument is defined, which controls the pool’s share of the cluster relative
to other pools. A weight of 2, for example, will get 2x more resources than other active
pools. Then, the application is submitted with the configuration and assigning one of the
pools:

./ bin/spark—submit
—class org.apache.spark.examples.SparkPi
—master spark://207.184.161.138:7077
—conf spark.scheduler.pool="pool —1'
——conf spark.scheduler. allocation. file="'conf.xml'
/path /to/examples. jar

In this example, the configuration flag spark.scheduler.allocation.file is passed to specify

where the XML configuration file is placed, and the flag spark.scheduler.pool is set to pool-1
so that the pool configuration is applied.

37

10

11

12

13

14

15

16

17

Condor allows to assign a numeric priority to the job in the ClassAd of the task that is
submitted. Here is a specific example:

executable = example
arguments SomeArgument

priority = 5
queue

In this example, the argument priority is set to 15, which specifies the job has a numeric
priority of 5.

Airflow similarly to SLURM and Condor, provides the priority abstraction, by allowing
to assignment a weight to each task. Here is a specific example:

om datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator

def example():
return 'Hello world from first Airflow DAG!'

dag = DAG('hello_world', description='Hello World DAG')

example_operator = PythonOperator (
task_id='example_task',
python_callable=example,
dag=dag,
priority_weight = 5

example_operator

In this example, the parameter priority weight with a value of 5 is passed to the task.
This specifies the task has a numeric priority of 5.
3.9.2 Group quota
. Group quota abstraction specifies task grouping and partitioning of available resources

among the different groups.

Kubernetes offers the concept of namespaces to group containers together, and then
assign quotas to each namespace, limiting the total amount of resources they can use.
Here is a specific example:

38

10

11

12

13

14

15

16

1

2

3

apiVersion: vl
kind: List
items:
- apiVersion: vl
kind: ResourceQuota
metadata:
name: pods-high
spec:
hard:
cpu: 100
memory: 200Gi
scopeSelector:
matchExpressions:
- operator : In
scopeName: PriorityClass
values: ["high"]

In this example, resource quotas are assigned to the pods with high priority. The
spec.hard.cpu is set to 100, and spec.hard.memory is set to 200Gi, which specifies that
resource quotas are limited to 100 CPU cores and 200Gi of memory. The scopeSelector
specifies what pods the resource quota is applied to, and in this case, are high-priority
pods.

SLURM | instead of limiting the total usage, partitions the available resources, assigning
each task a partition. Here is a specific example:

PartitionName=partition-example
Nodes=node [1-4]

In this example, a partition named partition-example is created, and the nodes 1, 2, 3,
and 4 are assigned. In case the file is saved as slurm.conf, the file must be placed in the
particular folder where SLURM looks up for configuration.

After the partition is created, partitions are assigned to jobs by adding the partition
parameter:

sbatch —job-name=example —partition=partition —example run.sh

Spark , tasks are grouped into pools, and then a minimum amount of resources is as-
signed to each pool. This way, the resources are partitioned, and the remaining available
resources are assigned to the pools depending on their priorities. Here is a specific exam-
ple:

<?xml version="1.0"2>
<allocations>
<pool name="pool-1">

39

<minShare>2</minShare>
</pool>
<pool name="pool-2">
<minShare>3</minShare>
</pool>
</allocations>

In this example, an XML file is created where two pools are defined. For each pool, the
minShare argument specifies a minimum share (of several CPU cores) that the pool should
have. Then, the application is submitted with the configuration and assigning one of the
pools:

./ bin/spark—submit
——class org.apache.spark.examples.SparkPi
—master spark://207.184.161.138:7077
——conf spark.scheduler.pool="'pool —1'
—conf spark.scheduler. allocation. file="conf.xml'
/path/to/examples. jar

In this example, the configuration flag spark.scheduler.allocation.file is passed to specify
where the XML configuration file is placed, and the flag spark.scheduler.pool is set to pool-1
so that the pool configuration is applied.

Condor , provides the abstraction of group quotas, a mix between Kubernetes and
SLURM. It creates different groups, each group is assigned a maximum resource usage,
and the tasks are submitted to specific groups. Here is a specific example:

GROUP_NAMES = group_one, group_two
GROUP_QUOTA_group_one = 20
GROUP_QUOTA_group_two = 10

In this example, a pool with thirty slots is defined: twenty slots are owned by group
one, and ten are owned by group two. The desired policy is that no more than twenty
concurrent jobs run from the group, only ten from group two. It only matters that the
proportions of allocated slots are correct.

After the group is created, groups are assigned to jobs by adding the accounting group
parameter:

executable = example
arguments SomeArgument

accounting_group = group_one
queue

Airflow does not provide the preempt abstraction.

40

3.9.3 Exclusivity

. Exclusivity abstraction specifies the exclusive allocation of resources so that there are no
jobs from different tenants using the same physical resources.

Kubernetes users can obtain CPUs exclusively by specifying that the container will use
the "static" policy. However, this cannot be specified for every container. Instead, the
configuration must be applied per node. Here is a specific example:

apiVersion: kubelet.config.k8s.io/vibetal
kind: KubeletConfiguration

address: "192.168.0.8"

port: 20250

cpuManagerPolicy: "static"

In the example, the node on IP address 192.168.0.8 and port 20250 is configured to have
a static cpu policy, which forces cpus on the node to be provisioned exclusively.

SLURM | similarly, allows to add of the exclusive CLI flag, so CPU cores are exclusively
provisioned for every job. Here is a specific example:

sbatch —job-—mname=example —exclusive run.sh

Spark, Condor and Airflow do not provide the preempt abstraction.

3.10 Abstraction - Manage data

In this section, we present the abstraction of data management, which specifies the
management of the data users use while running their jobs.
3.10.1 Access input data

Access input data specifies the abstraction for transferring initial input data into the

running jobs.

Kubernetes abstracts the data transfer through an abstraction called volume, which
maps files from the user file system into the container’s file system. Here is a specific
example:

apiVersion: vil
kind: Pod
metadata:
name: example
spec:
containers:
- image: example:1.28
name: example
volumeMounts:

41

10

11

12

13

14

15

16

- mountPath: /tmp/example
name: example-volume
volumes:
- name: example-volume
awsElasticBlockStore:
volumeID: "<volume id>"
fsType: extéd

In this example, an AWS Elastic Block Store (EBS) volume is transferred into the
container file system path /tmp/ezample. The mount path is defined at volumeMo-
unts.mountPath, and the AWS volume at awsFElasticBlockStore.volumelD.

SLURM offers the sbcast command to send a file to all job nodes. Here is a specific
example:

sbcast example /tmp/example

In this example, the file at path /tmp/example is sent to the job example.

Spark provides the input data access abstraction so that data transfers occur explicitly.
In Spark, users can explicitly define a streaming data source for the job, such as Kafka,
AWS S3, etc. Here is a specific example:

from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
foo = spark.read.parquet('s3a://example-file')

In this example, a spark application session is created, and then a parquet file is read
from AWS S3 by executing the command spark.read.parquet and specifying the S3 file
s3a://example-file.

Condor offers the condor_transfer_data command to transfer data to nodes, but users
can also transfer data when submitting jobs by specifying input files and adding the spool
flag. Here is a specific example:

condor submit —file /tmp/example —spool example

In this example, the file at path /tmp/example is transferred to the node where the job
example is submitted.

Airflow offers data transfer abstraction through tasks. In Airflow, the user can create a
task that is in charge of the data transfer to other tasks. Here is a specific example:

from datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator

42

10

11

12

14

15

16

17

18

19

20

21

22

dag = DAG('hello_world', description='Hello World DAG',
— on_failure_callback=task_failure_alert)

put_file = SFTPOperator(
task_id="test_sftp",
ssh_conn_id="ssh_default",
local_filepath="/tmp/example.txt",
remote_filepath="/tmp/example.txt",
operation="put",
dag=dag

def example():
return 'Hello world from first Airflow DAG!'

example_operator = PythonOperator(task_id='example_task',
— python_callable=example, dag=dag)

put_file >> example_operator

In this example, a task named put_file is created, which transfers a local file to a remote
path using the SFTP protocol. Next, that task is placed as part of the workflow and is
executed before the functions that will use the data.

3.10.2 Replicate
. Replicate specifies the abstraction for caching intermediate data of jobs.

Spark provides users with a persist command so that the intermediate data is persisted
in the node and can be reused in other operations. Here is a specific example:

from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()

df = spark.read.csv('s3a://example-file')
dfPersist = df.persist(StorageLevel.MEMORY_ONLY)

In this example, an S3 file is loaded from AWS S3 by running spark.read.csv, and then
the file is persisted by calling persist(StorageLevel MEMORY ONLY), where the argument
StorageLevel. MEMORY ONLY specifies that the file is persisted in memory instead of in
disk or external storage.

Kubernetes, SLURM, Condor and Airflow do not provide the preempt abstrac-
tion.

43

3.10.3 Partition

. Partition specifies the abstraction for data partitioning between several nodes of the same
job.

Spark provides explicit commands to partition the data being processed. But it also
implicitly partitions the data when iterating and applying operations to an array of data
without specifying it explicitly. Here is a specific example:

from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()

df = spark.read.csv('s3a://example-file')
dfPartitioned = df.repartition(10)

In this example, an S3 file is loaded from AWS S3 by running spark.read.csv. Then the
file is partitioned into ten parts by calling repartition(10), where the resulting data is hash
partitioned.

Kubernetes, SLURM, Condor and Airflow do not provide the preempt abstrac-
tion.

3.10.4 Recover

. Recover specifies the abstraction for the recovery of data after a job failure.

Kubernetes is a special case, as it offers API calls for checkpointing and data recovery
but does not implement it. The user must implement all the logic behind the API call.
Here is a specific example:

POST /checkpoint /{namespace}/{pod}/{container}

In this example, a checkpoint is requested through an HTTP Post request to a specific
namespace, pod, and container.

Condor offers fault-tolerance through self-checkpointing jobs. Jobs can exit with a spe-
cific exit code, signaling the scheduler that a checkpoint has just been performed and what
is the checkpoint file. This way, if the job fails later, the scheduler uses the most recent
checkpoint and relaunches the job. Here is a specific example:

checkpoint_exit_code = 85
transfer_output_files = example.checkpoint
should_transfer_files = yes

executable = example.py
arguments =

queue

44

10

11

12

13

14

15

16

17

18

19

20

21

22

In this example, the checkpointing logic is configured. The configuration file commands
Condor to transfer the file example.checkpoint to the submit node whenever the script
exits with code 85. If interrupted, the job will resume from the most recent checkpoints.
Once the configuration is set, the job that is submitted must take care of the checkpointing
logic:

import sys
import time

value = 0
try:
with open('example.checkpoint', 'r') as f:
value = int(f.read())
except IOError:
pass

print("Starting from {0}".format(value))
for i in range(value,10):
print ("Computing timestamp {0}".format(value))
time.sleep(10)
value += 1
with open('example.checkpoint', 'w') as f:
f write("{0}".format (value))
if value),3 ==
sys.exit(85)

print ("Computation complete")
sys.exit (0)

In this example, a Python script (example.py) is a toy example of code that checkpoints
itself. It counts from 0 to 10, sleeping for 10 seconds at each step. It writes a checkpoint
file and exits with code 85 at counts 3, 6, and 9. When done, it goes with code 0 to avoid
checkpointing and restarting.

SLURM, Spark, and Airflow do not provide the preempt abstraction.

3.11 Abstraction - Communicate

. In this section, we present the abstraction for communication, which specifies the inter-
actions between the user and the resources and between the user and the scheduler.

3.11.1 Signal

Signaling specifies the abstraction for sending signals to the running jobs.

Kubernetes does not provide a way to send signals to pods. The only way is to create
a second pod that shares the process namespace with the pod and then sends a process

45

10

11

signal. Here is a specific example:

apiVersion: vl
kind: Pod
metadata:
name: example-2
spec:
shareProcessNamespace: true
containers:
- name: example-1
image: example:1.28
- name: example-2
image: example:1.28

This example enables process namespace sharing using the shareProcessNamespace field
of .spec. After deploying the containers, you can connect to one of the containers and send
a signal to the other.

SLURM allows sending process signals to scheduled tasks, including SIGTERM or
SIGKILL, using the scancel command. Here is a specific example:

scancel —signal=KILL 1235

In this example, a SIGKILL signal is sent to all the tasks of job 1235.

Condor like in SLURM, you can send signals to the scheduled tasks using the procd_ctl
command. Here is a specific example:

procd _ctl SIGNAL PROCESS 9 1235

In this example, a signal with the number 9 is sent to job 1235.

Spark and Airflow do not provide the preempt abstraction.

3.11.2 Stdin

Stdin specifies the interaction with the running jobs through interactive input (stdin).

Kubernetes allows attaching stdin to containers by submitting them with the interac-
tive flag, but also let’s attach to an already running container using the kubcetl attach
command. Here is a specific example:

kubectl attach example

In this example, the user is attached to the standard input of a container named exam-
ple.

46

10

11

12

SLURM allows users to attach to stdin of a running job using the sattach command.
Here is a specific example:

sattach 15.0

In this example, the user is attached to task 0 of job 15.

Condor offers the ability to attach to stdin by submitting jobs with the interactive
flag or via the input command. All the other schedulers do not provide this programming
abstraction. Here is a specific example:

condor submit —interactive submitexample
In this example, by specifying the interactive flags, the user submits a job and is attached
to its standard input just after.

Spark and Airflow do not provide the stdin abstraction.

3.11.3 Callback

. The callback abstraction specifies executable code from the user executed asynchronously
by the scheduler on certain events or conditions.

Kubernetes users submit callbacks for each of the container lifecycle events they are
interested in so that the callback is executed when the pod changes state. A YAML
document defines callbacks. Here is a specific example:

apiVersion: vl
kind: Pod
metadata:
name: lifecycle-demo
spec:
containers:
- name: example
image: example:1.28
lifecycle:
postStart:
exec:
command: ["/bin/sh", "-c", "echo Hello from the postStart
< handler > /usr/share/message"]

In this example, a callback is assigned via the exec.command parameter. In this specific
case, it is specified that the callback is executed after the container has started, using
postStart.

SLURM offers the ability to add callbacks to specific job events using the strigger
command. Here is a specific example:

strigger —set —jobid=1234 —down —program=/tmp/callback

47

10

11

12

13

15

16

In this example, the program /tmp/callback is executed when any node allocated to job
1234 enters the DOWN state. That is to say when a node goes down.

Spark also offers callbacks, which can be defined in code and later set through a CLI
flag. Here is a specific example:

./ bin/spark—submit
——class org.apache.spark.examples.SparkPi
—master spark://207.184.161.138:7077
——conf spark.extralisteners=listener.ExampleListener
/path/to/examples. jar

In this example, a configuration flag spark.extraListeners is set to the value listener.
EzxampleListener specifies that a custom-made callback is passed to receive up-calls from
events that happen during execution. The callback is defined in a code file named listener,
and inside it, the listener is implemented as an object named EzxampleListener.

Airflow allows users to assign callbacks to tasks so that they are activated when events
occur in the task, such as failures. Here is a specific example:

from datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator

def task_failure_alert(context):
print(£"Task has failed, task_instance_key_str:
— {context['task_instance_key_str']l}")

def example():
return 'Hello world from first Airflow DAG!'

dag = DAG('hello_world', description='Hello World DAG',
«» on_failure_callback=task_failure_alert)

example_operator = PythonOperator(task_id='example_task',
<~ python_callable=example, dag=dag)

example_operator

In this example, a function named task failure alert is executed whenever a work-
flow task fails. A python function is defined and passed to the dag object through the
on_ failure_ callback argument for setting the callback.

Condor does not provide the preempt abstraction.

48

3.12 Limitations

First, the analysis of the industrial schedulers presents limitations due to the approach
with which we carried it out. On the one hand, we want to offer a high-level under-
standing of the industrial scheduler APIs to understand what abstractions they provide
and their differences. On the other hand, we also have the secondary objective of under-
standing scheduler APIs in general and taking the first steps toward designing a reference
architecture. Therefore, we keep the analysis as flexible as possible so the design or the
reference architecture approach does not condition us. Specifically, this is why we mix
actions like lease with inputs like physical constraints. That is, we do not differentiate the
user’s actions and the information she submits to perform the actions. Hence, this limits
the understanding that the user generates about the abstractions.

Second, the analysis focuses more on the WHAT than on the HOW. That is to say,
the objective of the analysis and the thesis, generally, is to model the content of the pro-
gramming abstractions, not their form. This analysis gives concrete examples of how each
scheduler implements the abstractions. However, we do this to justify that the scheduler
implements the abstraction, not to analyze the differences in how they implement it. Hence,
we do not offer a structured analysis of the form of the programming abstractions.

3.13 Summary

This section analyzes five mainstream industrial schedulers, identifying their main abstrac-
tions. The analysis is presented in an aggregated table, where we identify six abstraction
categories: provision, configure scheduler, constraints, quality of service, communicate, and
manage data. For each category, there are multiple sub-abstractions, and for each abstrac-
tion, we present a concrete example of how each scheduler implements it.

49

4 Reference architecture of scheduling programming abstrac-
tions

In this chapter, we will formally analyze the missing programming abstractions of the
industrial schedulers. For that, we build a reference architecture, which allows us to map
the schedulers into it, and thus identify which abstractions do not implement.

4.1 Overview

We identify missing abstractions of the industrial schedulers, build a reference architec-
ture, and map the schedulers into it. A reference architecture is a conceptual model that
provides a template solution for an architecture for a particular domain. In our case, we
build a conceptual model that identifies the API schedulers that could potentially provide.
This model allows mapping existing industrial scheduler APIs into it and consequently
identifies shortcomings. But it also provides the potential to guide scheduler designs and
offer a high-level overview of the scheduling field, helping with complexity and entry-level
problems.

Our contribution is made up of multiple items:

1. We describe the methodology we follow to build the reference architecture (Section
4.2).

We analyze the requirements for the reference architecture (Section 4.3).
We specify the design principles for the reference architecture (Section 4.4).
We carry out a literature survey of academic schedulers (Section 4.5).

We present and describe the reference architecture (Section 4.6) .

S A T

We validate the reference architecture by mapping the industrial schedulers to the
reference architecture (Section 4.7).

7. We identify missing programming abstractions of the industrial schedulers by map-
ping the industrial schedulers to the reference architecture (Section 4.7).

8. We explain the limitations of the reference architecture (Section 4.9).

4.2 Methodology

This section explains the methodology used to design and create the reference architecture.
The methodology consists of the following steps:

1. Analysis of requirements and design principles. First, we identify the require-
ments of the reference architecture and the design principle by which we will guide
and evaluate both the design and the result. This lets us formally justify and reason
the reference architecture.

2. Model real-world schedulers. This step is already carried out in Section 3. In
this step, the programming abstractions of real-world schedulers are modeled. For
that, we identify the top mainstream schedulers in the industry, and we analyze their

50

4.3

APIs. After analyzing its APIs, we extract the main abstractions and we group them
by categories. In this way, we identify the main current programming abstractions
in the industry.

Model emerging concepts from academia. After modeling the real-world sched-
ulers, we model the designs of emerging research in academia. The real-world sched-
ulers offer models on current programming abstractions. However, they do not cover
designs from emerging fields or alternative designs that are not yet established, such
as IoT/Edge, energy efficiency, etc. Therefore, in order to build a more accurate
reference architecture and identify shortcomings in industrial schedulers, we model
the latest research concepts. In the literature, many articles offer new programming
abstractions of schedulers, and it is impossible to model all of them. Therefore, we
carry out a literature survey limiting the work to a representative and relevant subset
of fifteen articles.

Unify real-world and emerging concepts from academia. Next, we extract,
filter, generalize, and unify the abstractions found in the industry together with the
ones found in academia, into a reference architecture. This step is the construction of
the reference architecture. The step results in a visual and syntactic representation of
a conceptual model that presents the scheduler programming abstractions, grouped
into high-level concepts that facilitate reasoning and abstraction.

. Intuitively extend the reference architecture. As a last step, we analyze the

reference architecture and use our intuition to identify gaps and develop extensions.
This step offers room for creativity and the idealization of the reference architecture.
Current industry and academy designs for schedulers can model the programming
abstractions of current and emerging schedulers. However, for the reference archi-
tecture to be future-proof and to drive innovation, we believe that it is necessary to
go one step further, and it is essential to use intuition since intuition is the tool that
allows modeling what does not yet exist.

Main requirements

To design a reference architecture, it is necessary to identify the requirements that must be
met. To specify the requirements, the stakeholders and their uses cases must first be identi-
fied, however, in this case, they are the same as those listed in section 1.3. Therefore, below,
we only list the requirements that guide the design of the reference architecture.

R1

R2

Comprehensibility. The most essential requirement is that when someone looks
at the reference architecture, they can quickly get an understanding of what it is
intended to offer. The reader should not make an excessive effort to identify the
different components that make up the reference architecture, how they relate to
each other, or what their high-level meaning is.

Simplicity. The reference architecture is designed for various stakeholders, from
university students to industrial computer engineers. Therefore, the design should
be simple without losing context or utility. This will facilitate the adoption and use
of the reference architecture. Quoting Leonardo di ser Piero da Vinci: simplicity is
the ultimate sophistication.

o1

R3

R4

4.4

Actionable. The main driver of the reference architecture is that it is used in
the real world, both as a learning resource about schedulers, as a scheduler design
guide, as a shortcoming analysis tool, etc. Therefore, the design of the reference
architecture always has to take into account whether the resulting work is actionable
by the identified stakeholders.

Future-proof. Technology constantly evolves, and new fields, such as edge com-
puting, serverless, etc., are emerging. Consequently, both the resources that the
schedulers assign to the workloads and the nature of the workloads change over the
years, and it is impossible to predict what they will be like in 5 or 10 years. There-
fore, it is important that the reference architecture is designed to be useful ten years
from now, despite changes in the field. It is a great challenge, but other works, such
as the Grid reference architecture, have achieved it, and all of them should serve as
inspiration [17].

Design principles

For the design of the scheduling programming abstractions reference architecture, we iden-
tify four design principles, which serve as a guide and evaluation of it.

P1

P2

P3

P4

Separation of Objects from Actions. Programming abstractions present what
users can do with schedulers. Two of our main objectives are that the reference
architecture is simple and comprehensive. To do this, it is important to make a clear
distinction between the actions that are performed and the objects that are used as
input to the actions. Actions represent what is going to be done, and objects how
it is going to be done. This separation makes it easier for the reader to understand
and build the mental model of the reference architecture.

Grouping of related actions. Schedulers offer various actions to users, each serv-
ing a different purpose. However, several actions are related to each other. Therefore,
to facilitate comprehension, related actions are grouped. This allows developers to
use these groupings to design the scheduler architecture and students to simplify the
establishment of their knowledge.

Avoidance of flavors within objects. One of the main requirements of the refer-
ence architecture is that it be future-proof. For this, it is necessary that the reference
architecture is not committed or coupled with any specific resource or workload. That
is, it should not identify particular technologies, such as Virtual Machines, SSD stor-
age devices, etc., since they may not exist in the future. In the same way, there are
infinite ways to represent and form different objects. For all this, objects must be
kept as high level as possible, avoiding concrete implementations and subtypes of
objects.

Naming relationships between actions and objects. The reference architecture
must relate the objects with the actions. But it is not enough to relate them, for the
work to be understandable and practical, it must identify the nature and context of
the relationship. Therefore, the relationships between objects and actions must be
named, and these names must be clear and concise.

92

4.5 Emerging concepts from academia

In this section, we model the emerging scheduler designs of the academy. The models serve
to identify later shortcomings of industrial schedulers, unify them with them, and generate
a reference architecture. We first present the methodology for selecting articles and then
expose the chosen research model.

4.5.1 Literature survey methodology

We carry out the literature survey as a combination of a systematic literature survey
and a snowballing search. Initially, the thesis supervisor recommends an initial subset
of articles to generate the list of keywords needed for the literature survey. From these
articles, using the snowballing search method, we find other articles and create a list
of keywords that represents the field of scheduler designs. Afterward, we carry out a
systematic literature survey until we have a list of fifteen articles. The systematic literature
survey offers reproducibility and reduces the biased selection of articles. At the same
time, the snowballing method facilitates the bootstrapping and collection of the key terms
necessary for the systematic approach.

Through the snowballing approach, we obtain an initial set of articles, and then, we
carry out the systematic literature survey as follows:

1. Generate and apply a search query. From the articles found through the snow-
balling method, we extract a set of keywords, and through them, we define a search
query that we use to generate the candidate articles. Next, we show the query in

SQL:
1
2 SELECT
3 venue, year, title , abstract, n_ citations
4 FROM
5 publications
6 ‘WHERE
7 lower (publications. title) LIKE ANY (array | '%scheduling%',"

%scheduler%']) OR (lower(publications.abstract) LIKE
ANY (array | '%scheduling%', '%scheduler%']) AND

8 (lower (publications.abstract) LIKE ANY (array | '%cloud%',
%cluster%', '%datacenter%', '%datacenter%', '%energy%',
'%data%']) OR lower(publications.abstract) LIKE ANY (
array ['%provided _by%', '%supplied _by%' , '%aware%' ,'%
interface%', '%api%', '%allows_user%'])))

9 ORDER BY

10 year desc, n_citations desc, title

2. Sort the search results by the number of citations normalized by year Once
we have the list of candidates, we order them so that the quality of the research
and novelty are prioritized. The article order formula is the number of citations
normalized by year. For that, we extend the SQL query above with the following:

1 ORDER BY
2 year desc, n_citations desc, title

93

3. Apply an acceptance criterion to the search results Once we sort the search
list, we define which items represent the field we want to model. The acceptance
criteria are straightforward: the article must present a scheduling programming ab-
straction or API.

4. Select the first 15 articles while applying filtering criteria Finally, we select
the first 15 articles that meet the acceptance criteria, with one extra exception; there
must be at least one article dealing with the following topics: energy efficiency, data
management, and [oT. These topics are explicitly prioritized since we consider them
essential due to global warming and the increasing data dynamism and heterogeneity
resulting in an explosive expansion of connected devices.

4.5.2 Schedulers from academia

This section presents an overview of the schedulers found in the literature survey of
academia.

Tetrisched. [43] Tetrisched is a scheduler that works with a reservation system and
offers programming abstractions to lease release virtual machines and make reservations.
But it also offers the possibility of specifying hard and soft time and space constraints,
affinities between the different machines, and gang scheduling.

Rayon. [10]| Rayon is a reservation scheduling system that allows to define reservations
declaratively through a custom language called RDL. It also offers the ability to specify
space and time, soft and hard requirements, task dependencies, and gang scheduling.

Alsched. [42]| Alsched is a scheduler that handles hard and soft constraints using com-
posable utility functions that users submit. Utility functions are defined as algebraic
expressions, and in this way, Alsched can optimize the overall utility of tenants.

W-scheduler. [39] W-scheduler is a scheduler that schedules multi-objective requests
applying the whale optimization algorithm (WOA). To handle multi-objective requests,
the user specifies the resource requirements and their budget for each resource. The sched-
uler applies the optimization algorithm to optimize the budget cost simultaneously as the
minimum makespan.

Energy-credit scheduler. [27| Energy-credit scheduler is a scheduler that focuses on
improving energy efficiency through better packing of virtual machines. The scheduler
performs machine energy consumption estimates by analyzing in-processor events. Then
it schedules virtual machines based on the energy budget and fiscal interval of the budget
that users submit.

Energy-aware scheduler. [26] Energy-aware scheduler is a scheduler that tries to
handle multi-objective requests that balance execution time and energy consumption. To
optimize scheduling, users submit an important energy-performance factor, and using that
and a set of heuristic schedules, the user requests.

Computation and data decoupled scheduler. [34] In this article, they implement a
scheduler to analyze the need to couple data movement and job scheduling. To analyze this,
the scheduler receives from the user the specification of affinity constraints for scheduled

o4

jobs on the nodes that have the data or on the nodes with the most negligible load. Aside
from constraints, it also allows users to replicate user data.

Data grid. [9] This is one of the reference articles for data management, where they
present the design principles for distributed management and analysis of large datasets.
The article specifies two basic services for data management: user input data and meta-
data access. On top of these two services, they present a third service: data replication
management.

Mobility-aware scheduler. [6] Mobility-aware scheduler is a scheduler for fog com-
puting, which optimizes the scheduling to choose the optimal location depending on the
application requirements. To optimize scheduling, users submit a profile of their appli-
cations to determine if they are delay-tolerant, real-time, or need to run in a specific
geolocation.

Delay-optimal scheduler. [49] Delay-optimal scheduler is a scheduler for edge com-
puting that optimizes whether to run the application on a mobile device or offload to a
nearby more powerful (MEC) server. The scheduler receives average delay estimates and
power consumption constraints to optimize the decision and applies a Markov decision
process.

Quasar. [13| Quasar is a scheduler that optimizes scheduling, trying to increase overall
resource utilization while maintaining application performance. Users do not accept re-
source constraints such as CPU or memory to optimize scheduling. Instead, users should
specify higher-level constraints such as throughput and latency.

Whiz. [19] Whiz is a scheduler offering a data-centric scheduling framework that tries
to optimize applications’ data computation. To optimize data computation, the scheduler
offers the user primitives for accessing the intermediate data that the application gener-
ates.

Availability-on-Demand scheduler. [38] Availability-on-Demand scheduler is a sched-
uler that optimizes the availability of applications. To optimize the availability of applica-
tions, the scheduler offers an API to users through which they can specify their availability
needs. They also offer different policies with which to configure the scheduler.

Paragon. [12| Paragon is a scheduler that reduces interference and increases the overall
utilization of user applications. Paragon receives application profiles that specify interfer-
ence tolerance and heterogeneity scores to optimize scheduling, then applies algorithms to
decide which applications to co-locate together.

Cost and deadline constrained scheduler. [30] Cost and deadline-constrained sched-
uler optimizes scheduling for applications with budget and deadline constraints. It applies
online or static algorithms to various user inputs to optimize scheduling. The scheduler re-
ceives two types of input; on the one hand, it receives the deadline and resource constraints
of the application. On the other hand, it also receives application profiles specifying the
runtime estimates and the execution priority.

95

Legend

Action /
: Relation
Subaction /

WHEN WHEN

Provision
lease/release

Manage data

. WHERE WHAT
access input

WHERE

User access intermediate resource migrate resource
data Scheduler preempt
access metadata - recover
replicate resource
partition
recover

WHEN WHEN
WHERE
User
WHAT resource WHERE
Communication Communicate Scheduler Configure Scheduler
process resource scheduler resource

Figure 2: The visual representation of the reference architecture. The hexagons represent
actions, the rectangles object, and the lines the relations between objects and actions.

4.6 Reference architecture

This section presents the reference architecture we generate from analyzing the industrial
schedulers, research schedulers, other inspirational articles such as A Reference Architecture
for Datacenter Scheduling 4], and intuition.

By modeling the industrial and academic schedulers, we identifystate-of-the-industry the
main components of the programming abstractions. These components could be objects
like constraints, or actions like provisioning, which we do not distinguish. However, we
distinguish objects from actions in the reference architecture, separating the WHAT from
HOW it is done. The reference architecture is found in Figure 2. The reference architecture
models the programming abstraction or scheduler APIs. The high-level approach of the
model is based on listing the objects and actions that the APIs present and how the objects
are related to the actions. The objects are the input that the actions receive. Each action
must have four types of relationships: WHAT, WHEN, and WHERE, and for each rela-
tionship, there can be one or more objects. In this way, programming abstractions can be
understood through the following syntactic structure: <action> <object> IN <object>

o6

WHEN <object>, where the objects and actions are filled with the reference architecture.
For example:

Provision : Lease

UserResource<type:job, runtime:5d>

IN SchedulerResource<type:vm, cpu:2.4Ghz, memory:16Gb>
WHEN Event<day:31, month:12, year:2022, hour:00, minute:00>

And also:

Provision: Scale

UserResource<type:app>

IN SchedulerResource<type:vm, cpu:2.4Ghz, memory:16Gb>
WHEN Event<cpu. utilization:>80%>

In Listing 1, we define the syntax of our reference architecture formally using the Ex-
tended Backus—Naur Form [16], a family of metasyntax notations.

Listing 1: Reference Architecture EBNF Formal Syntax.

<ReferenceArchitectureSyntax> ::= <Action>
| (<UserResourceObject> | <SchedulerObject>
| <CommunicationProcessObject >)
‘ HIN”
| (<UserResourceObject> | <SchedulerResourceObject>
| <SchedulerObject >)
| "WHEN" <EventObject>

<Action> ::= <ProvisionAction> | <ConfigureSechedulerAction>
| <ManageDataAction> | <CommunicateAction>

<ProvisionAction> ::= 'Provision' ':'
(
"Lease' | 'Release'
| 'Scale' | 'Migrate' | 'Preempt' | 'Recover'
)
<ManageDataAction> ::= 'ManageData' ':'
(
"AccessInputData' | 'AccessIntermediateData '
| 'AccessMetadata' | 'Replicate' | 'Partition'
| 'Recover'
)
<ConfigureSchedulerAction> ::= 'ConfigureScheduler'
<CommunicateAction> ::= 'Communicate'

o7

<UserResourceObject> ::= 'UserResource' <Metadata>

<SchedulerObject> ::= 'Scheduler' <Metadata>

<CommunicationProcessObject> ::= 'CommunicationProcess'
<Metadata>

<SchedulerResourceObject> ::= 'SchedulerResource' <Metadata>

<Metadata> ::= '<' '>!

| '<' <MetadataMembers> '>'

<MetadataMembers> ::= <Pair>
| <Pair> ',' <Members>

<Pair> ::= String ':' <Value>

<Array> = '[']!

| '"|'" <Elements> '|'
<Elements> ::= <Value>
| <Value> ',' <Elements>

<Value> ::= String
| Number

| <Object>

| <Array>

| true

| false

| null

4.6.1 Objects
Next, we define each of the objects and actions of the reference architecture.
The objects are the following:

e Event: objects in time or instantiations of object properties. Such as a concrete
datetime (00:00 of 31st of December 2022) or an instantiation of a property like a
metric reaching a number (CPU utilization is more significant than 80%).

e User resource: Representation of any input from the user. This includes execution
units like a job, task, etc., and the data the execution units use as a file, environment
variable, etc.

e Scheduler resource: Representation of resources owned by the scheduler and man-
aged by the scheduler. Resources can be virtual machines, containers, storage sys-
tems, databases, etc.

o8

e Communication process: Representation of the communication process, such as
a signal, message, callback, etc.

4.6.2 Action - Provision

In this section, we present the abstraction for the provisioning of resources. This is the
main and most basic abstraction of scheduling since it is by which resources are acquired
and managed.

Lease/release specifies the activation and assignment of a valuable resource to a sched-
uler resource. For example:

Provision: Lease

UserResource<type:job, runtime:5d>

IN SchedulerResource<type:vm, cpu:2.4Ghz, memory:16Gb>
WHEN Event<day:31, month:12, year:2022, hour:00, minute:00>

Scale specifies the addition or deletion of scheduler resources. For example:

Provision: Scale

UserResource<type:app, ID:123>

IN SchedulerResource<type:VM, cpu:2.4Ghz, memory:16Gb>
WHEN Event<cpu.utilization:>80%>

Migrate specifies the migration of a resource to a different scheduler resource. For
example:

Provision: Migrate

UserResource<type:app, ID: 123>

IN SchedulerResource<type: VM, cpu:2.4Ghz, memory:16Gb>
WHEN Event<oversubscription: > 20%>

Preempt specifies the abortion of execution or assignment of a user scheduler, putting
it back in the scheduler queue. For example:

Provision : Preempt

UserResource<type:application , ID:123>

IN SchedulerResource<type: VM, cpu:2.4Ghz, memory:16Gb>
WHEN Event<time: now>

Recover specifies the recovery of a user resource after a failure, restarting the execution,
or putting it back into the scheduler queue. For example:

Provision: Recover

UserResource<type: app, ID: 123>

IN SchedulerResource<type:VM, cpu:2.4Ghz, memory:16Gb>
WHEN Event<type:failure , return—code:>0>

99

4.6.3 Action - Configure scheduler

In this section, we explain the meta-scheduling abstraction. This abstractions family spec-
ifies the configuration of the behavior of the scheduler. This abstraction is necessary for
the tuning of the scheduler to better adjust to the users’ workload and the datacenter’s
environment.

4.6.4 Action - Manage data

In this section, we present the abstraction of data management, which specifies the man-
agement of the data users uses while running their jobs.

Access input data specifies the access to data that user execution resources take as
input. For example:

ManageData: AccessIlnputData
UserResource<type: file , src:/tmp/data>
IN SchedulerResource<type: VM, ID: 123>
WHEN Event<now>

Access intermediate data specifies the access to data that user execution resources
generate during their runtime. For example:

ManageData: AccessIntermediateData
UserResource<type:stream, src:stdin>

IN SchedulerResource<type:SSD, space:150Ghb>
WHEN Event<now>

Access metadata specifies the access to the user input and intermediate data informa-
tion. For example, for accessing metadata on one VM about the files generated by another
VM:

ManageData: AccessMetaData

UserResource<type: files , source:vm<id:123>>

IN SchedulerResource<type:type, src:/tmp/metadata,
dst:vim<id:124>>

WHEN Event<now>

Replicate specifies the replication or copying of the user input and intermediate data.
For example:

ManageData: Replicate

UserResource<type: file , src:/tmp/filel >

IN SchedulerResource<type:HDD, src:/global/userl/filel >
WHEN Event<now>

60

Partition specifies the partitioning of the user input and intermediate data so that a
subset of the data is placed in different places. For example:

ManageData: Partition
UserResource<type: file , src:/tmp/filel , partitions:
[partition<start:0, stop:10, step:byte>, partition<start:10>]>
IN SchedulerResource<SchedulerResource<type :HDD,
src:/ global /userl/filel /partitions >
WHEN Event<now>

Recover specifies the recovery of the user input and intermediate data after the failure
of execution or the storage system. For example, for performing checkpoints every 10
minutes:

ManageData: Recover

UserResource<type: files , src:vim<id:123>, path:/tmp>

IN SchedulerResource<SchedulerResource<type: SSD,
src: /global/userl/vin/123/checkpoint >

WHEN Event<interval: 10min>

4.6.5 Action - Communicate

In this section, we present the abstraction for communication, which specifies the inter-
actions between the user and the resources and between the user and the scheduler. For
example, for sending a signal to a running application:

Communicate
CommunicationProcess<type:signal , value:9>
IN UserResource<type:app, id:123>

WHEN Event<now>

And an example for setting a callback:

Communicate

CommunicationProcess<type:callback , src:callback.py>
IN UserResource<type:app, id:123>

WHEN Event<metric.cpu.utilization:>80%>

4.7 Validation through mapping of schedulers

A reference architecture must be able to model real-life schedulers since its main utility is to
map items into the model accurately and analyze features and shortcomings. Therefore, in
this section, we validate the reference architecture by mapping the five industrial schedulers
we identify in RQ1.

We perform two mappings; the first is a detailed mapping of one of the schedulers
to exemplify the mapping process. And the second is a generalized mapping of all the
schedulers in the same table, validating the reference architecture.

61

Through the mapping, we respond to the question of RQ2 What programming abstrac-
tions of scheduling are missing in mainstream industrial schedulers?.

4.7.1 The mapping process

We consult each scheduler’s official documentation and source code and the articles and
blogs we find online. Then, using these resources, for each component of the reference
architecture, we identify if there is a complete match, partial match, or no match. The
meaning of the match is different for objects than for model actions. In the case of actions,
a complete match is when the scheduler offers the action. A partial match is when the
action is offered in a limited way; that is, the action may only be offered at a specific
moment in the lifecycle, e.g., it only allows to scale when the CPU utilization is more than
80% or when the parameters with which the action can be performed are limited, e.g., a
service can only be scaled by adding VMs of the same type of resources. A no-match is
when the scheduler does not offer the action. In the case of objects, a full match means
that the scheduler accepts users to specify the object and that the object specification
is flexible so that the scheduler does not have to know the user input in advance. For
example, the user can add any metadata information. A partial match means that the
scheduler allows the user to specify only a limited set of objects, and the user can only
use inputs the scheduler knows in advance. For example, the user can only specify CPU
constraints, not any other resource type. A no-match means that the scheduler does not
allow to specify the object.

4.7.2 Exemplary mapping of Kubernetes

In this section, we describe and reason the mapping of Kubernetes to the reference archi-
tecture.

1. Provision: Two provisioning sub-actions are fully implemented: and

scale?. These actions are found in the analysis of Section 3.5. However, recover® and
preempt? are not fully matched because Kubernetes limits the recovery of containers
to simple restart policies, and the is not performed via a direct command;
instead, Kubernetes decides when and what to preempt based on assigned priorities.

Lastly, the action is a no-match because it is not implemented. The user

cannot perform manual migrations on Kubernetes.
Regarding objects, when applying the | lease /release |, , [recover |, and

actions, the user can specify any user resource and scheduler objects. The scheduler
resources are described through the resource constraints® we identify in the analysis of
industrial schedulers and the user resources through the abstraction of annotations®,
which allows adding metadata to the user containers. However, the object is

scale

’https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale
3https://kubernetes.io/docs/concepts/workloads/pods/pod-1lifecycle/#restart-policy
‘https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption
Shttps://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#equality-ba
sed-requirement
Shttps://kubernetes.io/docs/concepts/overview/working-with-objects/annotations

62

Legend

Partial

Full match match

No match

WHERE
Provision

scale

WHEN

WHERE
Provision cheduler
recover resource

WHEN

User
resource

WHEN
Provision cheduler
migrate resource

WHEN

WHEN

WHERE
User
resource
cheduler
resource

Manage data
access input data

WHERE
User
resource

Manage data
recover

User
resource

WHEN

WHERE

User
resource

Manage data
access intermediate

data
access metadata cheduler
replicate resource
partition

oy

Figure 3: Kubernetes mapped to the reference architecture.

63

only partially implemented when doing | lease /release | and ’ scale ‘ and [recover | and is
not implemented for . It is partially implemented because, in Kubernetes,

the user can only using the cron format, which forces them to do recur-

ring executions. The action only allows scaling based on metrics, not events
such as specific dates. The action is limited to specific policies that include
always and onFailure. Last object is a no-match for | preempt | because
the user cannot control when preemption occurs; Kubernetes decides internally when
preemption should happen.

2. Configure scheduler: Kubernetes allows users to modify the scheduler configuration”
through so-called scheduler profiles specified by a YAML file. Moreover, it allows
to deploy of multiple schedulers®. However, the scheduler configuration is limited
to specific extension points? and plugins'®. Therefore, Kubernetes fully matches the

lconﬁgure scheduler ‘ action but partially matches the|scheduler | and | event | objects.

3. Manage data: Out of the six sub-actions of the management data action, Kubernetes
only offers two: ’access input data‘ and [recover | On the one hand, regarding the
access input data action, Kubernetes allows users to specify any input data via
volumes'!, and the volumes are always attached to the containers that the user
describes. Therefore the object is fully matched. However, it does
not specify when to access the input data nor allow storing and retrieving it from
scheduler resources. Therefore, the]event\ and ’scheduler resource | objects are no-
matches. On the other hand, the API it offers to is not through a YAML file
but through an HTTP call with specific parameters'? that partially lets to specify the

user resource | to recover. Therefore, the [user resource | object is partially matched,

while ’event \ and ’scheduler resource‘ objects are not.

4. Communicate: Kubernetes partially matches the action since it al-

lows to specify callbacks'® and attach the stdin'* to the containers. However, it
does not allow sending generic messages or other communication processes, such as
sending signals to containers through the API. Moreover, the callbacks are limited
to specific events, and the stdin can only be attached synchronously; users cannot
specify events to which stdin is attached. Lastly, only specific user resources can
be specified when adding the callbacks and attaching the stdin; users cannot apply
the action to multiple containers by grouping them based on specific characteristics.
Therefore, ,] event \, and [user resource | objects are partially

matched, while ’scheduler resource‘ and ’scheduler‘ are no-matched.

communication process

"https://kubernetes.io/docs/reference/scheduling/config
8https://kubernetes.io/docs/tasks/extend-kubernetes/configure-multiple-schedulers
“https://kubernetes.io/docs/reference/scheduling/config/#extension-points
https://kubernetes.io/docs/reference/scheduling/config/#scheduling-plugins
"https://kubernetes.io/docs/concepts/storage/volumes
2https://kubernetes.io/docs/reference/node/kubelet- checkpoint-api
3https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-even

Yhttps://kubernetes.io/docs/tasks/debug/debug-application/get-shell-running-container

64

4.7.3 Exemplary flow of Kubernetes

This section presents an end-to-end example of a complete execution of Kubernetes, identi-
fying which scheduling actions are performed and what objects are used. The flow example
runs since the Kubernetes administrator configures the Kubernetes nodes and the cluster
until the users run pods. Next, we list the steps and the specific action and object of the
reference architecture:

1. The Kubernetes administrator setups the cluster; for that, it connects to a datacenter
and provisions several Virtual Machines where the nodes are deployed. The command
would be:

Provision: Lease

UserResource<type:vm, id:1>

IN SchedulerResource<type:vm, cpu:2.4Ghz, memory:16Gb,
gpu:nvidia>

2. The Kubernetes manager setups automatic scaling of provisioned resources so that
if the VMs consume more than 80% of the CPU power, a new VM is provisioned
where a new K8s node is launched. The command would be:

Provision: Scale

UserResource<type:vm, id:i+1>

IN SchedulerResource<type:vm, cpu:2.4Ghz, memory:16Gb>
WHEN Event<cpu.usage: 80%>

3. The Kubernetes manager configures the cluster so that whenever the VM fails or
stops running, it recovers by restarting the VM. The command would be:

Provision: Recover

UserResource<type:vm, id:1>

IN SchedulerResource<type:vm, cpu:2.4Ghz, memory:16Gb>
WHEN Event<exit .code:>0>

4. Apart from making sure that the user container restarts automatically when it fails,
Kubernetes also performs health checks on its nodes to get metrics and understand
the health and status of the nodes. The command would be:

Communicate

CommunicationProcess<type:metric, metrics:all>
IN UserResource<type:vm, id:1>

WHEN Event<metric: update>

5. Once the Kubernetes cluster is initialized, users start using it. The user deploys an
application in a container on top of the Kubernetes cluster, passing a pod manifest.
In the pod manifest, the user specifies the resources that the container needs, in this
case, a GPU, but also that the container will be restarted every time it fails through
the restartPolicy. Finally, the user specifies the input data they want to access from
the provisioned pod. That is, the data the user wants to transfer to the initialization

65

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

of the pod. The data comes from a user path (host) under /data. The Pod manifest
would be:

ersion: apps/vl

: Deployment

data:

me: example-deployment

mplate:
metadata:
labels:
app: example
spec:
restartPolicy: OnFailure
containers:
- name: example
image: example:1.28
resources:
limits:
nvidia.com/gpu: 1
volumeMounts:
- mountPath: /example-path
name: example-volume
volumes:
- name: example-volume
hostPath:
path: /data
type: Directory

And the commands would be:

Provision : Lease

UserResource<type:pod, id:1>

IN SchedulerResource<type:container ,
gpu:<type:nvidia , amount: 1>>

Provision: Recover

UserResource<type:pod, id:1>

IN SchedulerResource<type:container ,
gpu:<type:nvidia , amount: 1>>

WHEN Event<state: failed >

ManageData: AccessInputData
UserResource<type:folder , type:host, path:/data>
IN UserResource<type:pod, id:1>

6. Next, the user specifies a scaling policy so that when the container exceeds 90% CPU

utilization, it automatically provisions a new pod. The manifest would be:

66

1 |ersion: autoscaling/v2

2 : HorizontalPodAutoscaler
3 |data:

4+ |me: example

6 |aleTargetRef:

7 |apiVersion: apps/vl
8 |kind: Deployment

9 |name: example

10 |trics:

11 |[type: Resource

12 |Tresource:

13 name: cpu

14 target:

15 type: Utilization

16 averageUtilization: 90

And the command would be:

Provision: Scale

UserResource<type:pod, id:i+1>

IN SchedulerResource<type:container , gpu:<type:nvidia ,
units:1>>

WHEN Event<cpu.usage: 90%>

7. Finally, when the user’s pod finishes execution, the user releases the container to
make room for other users. The command would be:

Provision: Release
UserResource<type:vm, id:1>

4.7.4 Aggregated mapping of industrial schedulers

In this section, we repeat the mapping process for all the industrial schedulers and add the
results in two tables. In Table 2, we map the actions and sub-actions, and in Table 3, we
map the objects. For each action or sub-action, we specify if it is a complete, partial, or
no match. And for each object, we specify if it is a complete, partial, or no match.

In the aggregated tables, we relate objects to several sub-actions simultaneously. In
each sub-action, the objects can be specified in different ways, and therefore in some, the
objects will be a whole match, and in others, partial or no match. Therefore, to decide to
set an object as full, partial, or no match, we do the following: 1) for each sub-action, we
see what type of match it is; 2) if it is full, we assign 100% if it is partial 50% and if it is
none, 0%, 3) for each object we average the percentage of the actions that are a complete,
partial match, and 4) if it is less than or equal to 33% we set it as no match if it is greater
than 33% and less than 66% we set it as partial match, and if it is greater than or equal
to 66% we set it as a full match.

67

Table 2: Full overview of programming abstraction actions of schedulers mapped to the
reference architecture.

Schedulers

Action sub-action SI Sp Co

lease / release
scale
Provision migrate
preempt
recover

Configure scheduler

access input

data

access intermediate
Manage data data

access metadata

replicate

partition

recover

o
O
O
[]
L
J
J

“*000 O e |0wvC00r
~00C0 O e e~eCCe
“ 0000 O e |e*CCOeE

0000 O
"000(O ¥

Communicate

Legend: @/p/O = full/partial/no match; Ku = Kubernetes; S| = SLURM; Sp = Spark;
Co = Condor; Ai = Airflow.

Table 3: Full overview of programming abstraction objects of schedulers mapped to the

reference architecture.

Schedulers
Ku SI Sp Co Ai

Action Object

user resource [D D D]
Provision event]] D D D
scheduler resource e O) e O
scheduler] > 6 e o
Configure scheduler event] » O O O
scheduler resource] o O O
user resource D > © D [
Manage data event o O O O O
scheduler resource O » O D O
communication process D] D D o
event]]) O D
Communicate user resource] > © D [
scheduler resource O » @€ O O
scheduler o » O O O

Legend: @/p/O = full/partial/no match; Ku = Kubernetes; SI = SLURM; Sp = Spark;
Co = Condor; Ai = Airflow.

68

On the one hand, regarding actions of programming abstractions, the results indicate
that the industrial schedulers have shortcomings and that several actions and components
do not fully implement them. There is an obvious pattern: most schedulers implement

, and | communicate |.

And yet, the | communicate | action is partially implemented. All others are either partially

four actions: | lease/release |, | configure scheduler |, | access input data

i

implemented or not implemented at all. The biggest shortcoming is the
action, where most sub-actions are not implemented. That is, industrial schedulers are not
designed to manage and schedule the data used by users.

On the other hand, there is also a clear tendency in the objects where most of the
objects for the ’provision‘ and ’conﬁgure scheduler | actions are fully implemented. While

most objects for are partially implemented, many are no matches. The
schedulers capable of implementing the most significant number of objects are Kubernetes
and Apache Airflow. Therefore, we conclude that the programming abstractions of the
industrial schedulers are under-implemented.

In conclusion, in this section, we validated the reference architecture, being able to map
all the industrial schedulers. Furthermore, we conclude that the mainstream industrial
schedulers are unimplemented since a large part of the actions and objects of the reference
architecture are partially implemented or not implemented at all.

4.8 Mismatch between industrial scheduler aggregated mapping and the
reference architecture

The reference architecture we built has several mismatches with the analysis presented
in section 3.5 of industrial scheduler abstractions; the two are not 1:1. In this section,
we explain why there are differences between these two models. But before explaining
the differences, it is essential to clarify that the analysis of industrial schedulers does not
differentiate between action and object. Unlike the reference architecture, it mixes the
different types of abstractions in the same table. Next, we will explain the differences by
separately identifying the objects and actions they do not have in the joint.

On the one hand, three actions exist in the reference architecture and are not in the
industrial scheduler table. The three actions are migrate, accessIntermediateData, and
accessMetadata. Surprising as it may be, none of the schedulers offer an abstraction
for migration. Some schedulers like Kubernetes perform migrations internally to optimize
scheduling, but none offer an explicit API to users. We include it in the reference archi-
tecture since, based on our experience, it seems to be a necessary action in scheduling,
which should not be implemented implicitly and internally but should be a main action.
Afterward, none of the schedulers implements the abstractions to access intermediate data
and metadata. Even so, we include them in the architecture reference because the most
relevant academic articles present scheduling abstractions for data management [34] [9]
identify these two APIs as essential.

On the other hand, several abstractions are in the industrial scheduler table but not in the
reference architecture. The abstractions that do not appear are all the sub-abstractions of
configure scheduler, all the constraints and quality of service abstractions, and

69

finally, all the sub-abstractions of communicate. All these abstractions that we find in
the table of industrial schedulers but not in the reference architecture are objects. If we
look closely, these abstractions are object nouns instead of action verbs. We do not have
them in the reference architecture because instead of specifying exact implementations,
we generalize the objects in a way that models as many existing and future scheduling
objects as possible. However, in the table of the industrial scheduler, we identify the
concrete abstractions we find. Generalizing has advantages and disadvantages, which we
list in the limitations section of the reference architecture in 4.9. The sub-abstractions of
configure scheduler are represented as objects of type scheduler, the constraints as
objects of type scheduler resource, the quality of service as objects of type user
resource, and the sub-abstractions of communicate as objects of type communication
process.

Lastly, it is necessary to explain that while in the analysis of industrial schedulers, we
only have full or no matches, when mapping the reference architecture, we add partial
matches. Industrial scheduler analysis aims to identify and discover abstractions, so there
is no necessity for differentiating between full and partial matches. However, the reference
architecture mapping aims to understand what abstractions schedulers implement. That
is why we introduce the partial match in the mapping.

4.9 Limitations

A reference architecture is limited because it is kept at a sufficiently high abstraction layer
to map and represent all schedulers. Therefore, the abstraction layer cannot represent all
the details that allow differentiating and comparing one scheduling API from another. It
is essential to identify what these limitations are.

The limitations, like the reference architecture, are divided into two groups, the actions
and the objects of the APIs. Regarding actions, the reference architecture identifies the
primitive actions schedulers can offer. Our goal is that the actions are future-proof so
that in 10 years, the actions do not need to be extended. However, it is impossible to
know if any new field will develop or become a first-class citizen forcing schedulers to offer
new actions in their API. Even so, we believe that future trends should not suppose an
extension in the actions that the schedulers offer but in the definition of the objects.

The most important limitations are found in the objects. Our reference architecture has
only five distinct objects, and we do not specify sub-objects for each. For example, one of
the objects is the ’ SchedulerResource |, which allows the user to specify the characteristics
of the resources she wants to assign. But our reference architecture does not differentiate
between an API that offers VMs or Edge mobile devices. This is a limitation, but it is
made to be future-proof since if there is one thing sure, the resource type is constantly
changing. For example, now there is an increasing demand for resource schedulers on
serverless platforms or edge devices, and in five years, nobody knows where the user jobs
will be executed.

4.10 Summary

In this section, we identify the shortcomings of the industrial scheduler APIs, build a

70

reference architecture and map the schedulers to it. To build the architecture reference, we
carried out a literature survey of academic schedulers, in which we selected and analyzed
15 articles using a systematic literature survey. Then, to generate the final version of
the reference architecture, we combine it with the programming abstractions found in
the industrial scheduler analysis and intuition. The reference architecture comprises five
unique objects and four actions containing several sub-actions. The main abstractions of
the industrial schedulers that are missing when mapping to the reference architecture are
those related to data management and communication.

71

5 Experiments with the reference architecture

In the previous section, we mapped industrial schedulers into the reference architecture,
and we identified under-implemented APIs. We state that schedulers prioritize simplicity in
their programming models, and thus, they limit users’ programmability. We hypothesize
this simplicity has schedulers need to give their users greater programmability and to
prove that schedulers must give greater programmability to their users to improve user-
applications performance.

5.1 Selection of under-implemented scheduling APIs to experiment

In this section, we choose three different under-implemented programming abstractions in
the scheduler APIs we will use to perform the experiments. The shortcomings are obtained
from the mapping carried out in the previous section. Below we present the summary
for each of the experiments, detailing: 1) a specific use case in which API scheduling is
required, 2) how an ideal scheduler implements the abstraction, 3) the reason why one
or more industrial schedulers cannot implement it, and 4) the extension they need to
implement it.

Experiment 1: Reservations

e Use-case: Users make reservations of VMs; specifically, they request the scheduler
to lease a vin at a specific datetime in the future, and they include an estimate of
runtime for the scheduler to optimize the placement.

e Ideal scheduler: The user performs a lease action and submits a user scheduler ob-
ject containing metadata about the expected runtime and an event object specifying
the date and time in the future at which the virtual machine needs to be leased.

e Industrial scheduler shortcomings: Kubernetes does not provide a proper API
for reservations; since it forces the users to submit recurring jobs, it does not allow
them to execute them only once. SLURM allows specifying reservation dates, but it
does not provide an abstraction for users to submit runtime estimates. Spark does not
provide abstractions for reservations or runtime estimates. Condor, like SLURM, has
the ability for future submissions but not for submitting estimates. Lastly, Airflow
allows users both future submissions and estimates of runtime.

¢ Extension: Kubernetes must allow non-recurring future submissions. SLURM and
Condor must allow users to submit runtime estimates, and Spark must allow users to
submit future executions and runtime estimates. For allowing estimates, schedulers

must be extended to fully implement the objects and objects

for allowing future submissions.
Experiment 2: Migrations

e Use-case: When interferences occur in a physical machine, the scheduler requests
the user to migrate or reduce part of the workload to another VM through a callback.

e Ideal scheduler: The user performs a | communicate | action specifying a communi-
cation process object: a callback, an | event | that identifies when there is interference,

72

Table 4: Diff on the mapping of the programming abstraction objects for Experiment 1.
! represents the diff, the changes required for implementing the extension.

. . Schedulers
Action Object Ku SI Sp Co Ai
user resource o e o ©o]
Provision event o D ®) o

scheduler resource @ ®) o]

Legend: @/p/O = full/partial/no match; Ku = Kubernetes; SI = SLURM; Sp = Spark;
Co = Condor; Ai = Airflow.

and a useful resource object identifying the VM where the interference occurs.

e Industrial scheduler shortcomings: Kubernetes, SLURM, Spark, and Airflow
allow users to submit callbacks, but none provide the object abstraction of a migra-
tion request within the callbacks. Unlike all the others, Condor does not provide an
abstraction for users submitting callbacks.

¢ Extension: Kubernetes, SLURM, Spark, and Airflow must extend the API to in-
clude event objects that represent migrations, while Condor needs to extend its

communicate | action to accept callback | communication process| objects and also

accept objects that represent migrations.

Table 5: Diff on the mapping of the programming abstraction objects for Experiment 2.
. represents the diff, the changes required for implementing the extension.

. . Schedulers
Action Object Ku SI Sp Co A
communication process b >) e o
event o e O ©o o
Communicate user resource) > O) o
scheduler resource O » @€ O O
scheduler @) » O O O

Legend: @/D/O = full/partial/no match; Ku = Kubernetes; SI = SLURM; Sp = Spark;
Co = Condor; Ai = Airflow.
Experiment 3: Metadata Access

e Use-case: When the user has a bag-of-tasks workflow where each task processes a
data object, the user requests metadata about each object to optimize the order in
which the tasks are executed.

e Ideal scheduler: The scheduler internally records every object storage server’s con-
gestion and returns the expected retrieval time based on the internal congestion
metrics for every metadata request on objects.

e Industrial scheduler shortcomings: Kubernetes, SLURM, Spark, Condor, and

73

Table 6: Diff on the mapping of the programming abstraction actions for Experiment 3.
! represents the diff, the changes required for implementing the extension.

. . Schedulers

Action Subaction Ku SI Sp Co Ai
access Input °) e o °
data
access intermediate

Manage data data © o o 0
access metadata o e o o o
replicate O O @€ O O
partition O O e O O
recover] O @& © @)

Legend: @/b/O = full/partial/no match; Ku = Kubernetes; S| = SLURM; Sp = Spark;
Co = Condor; Ai = Airflow.

Airflow, none provide API for accessing metadata.

e Extension: Kubernetes, SLURM, Spark, Condor, and Airflow must implement the
access metadata‘ abstraction.

A comprehensive overview of these experiments can be found in Table 7, which outlines
the API extensions, parameters, traces, and metrics for each use-case.

5.2 Traces

For the experiments, we use real-world trace workloads. We chose traces from private and
public cloud environments, which offer anonymized requests from VMs, plus aggregated
metrics on resource utilization every 5 minutes. The chosen traces are Bitbrains Azure
and Google. While Bitbrains and Azure traces are VM requests, Google traces are task
requests. Generally, task requests are shorter in duration and consume fewer resources than
VM requests. We include task requests to enrich our experiment and see how the results
of experiments change with short-lived and small consumption requests. Even though our
experiments are designed for VMs, it’s straightforward to convert them for task requests
and CPU core reservations instead of VM reservations. Since the logic of experiments is
the same for VMs as it is for tasks. Moreover, in the simulation of the experiment, we do
not have to make any major changes.

Bitbrains is a private cloud provider operating mainly in the Dutch ICT market; the
aggregate duration is one month with 1250 VMs. Finally, we also chose the Azure and
Google traces, which are traces from Microsoft’s and Google’s public cloud providers,
respectively. On the one hand, the Azure trace is very recent, from 2020. The original
trace contains 2 million VMs, and the aggregate duration is approximately two and a half
months. However, it is a very large trace compared to the other traces, requiring much
time and execution power. Therefore, 1829 VMs from the original trace are sampled using
the OpenDC sampling tool. On the other hand, the Google trace is from 2014, its original
trace contains 17.8 million tasks, and the duration is approximately one month. This trace

74

Table 7: Summary of evaluation experiments.

Name API . Parameters Fixed Traces Metrics
extension parameters

?Eservatlon User provided Reservation Scheduling Azure Waiting

' start time and ratio re- policy Bitbrains time slow-
resource esti- source (EFT) Google down
mates utilization

15\/[(15grat10n Container Migration Resource Azure Execution

' migration via type over- utilization Bitbrains time pack-
orchestrator subscrip- (85%) Google ing effi-
callbacks tion FIFO pol- ciency

icy

Metadata

access Use storage Metadata- Resource Google and Buffer size

5.7 subsystem aware task utilization IBM com- total time
busyness to reorder (80%) bined
order tasks policy

is very large, so we sample 1 million requests from the original trace in 2.5 days. We sample
more requests than in Azure since the Google runtime is much smaller. This is because
Google traces are not VM requests but task requests.

Table 8 summarizes the characterizations of these workloads.

Workload VMs Duration VM duration CPU cores CPU capacity Memory
[Days] [Days| [Days] [GHz] [GHz] [GBs| [GBs]
Mean o Mean o Mean o Mean o
Bitbrains 1250 30 28 5 3.27 4.04 2.7 0.16 11.75 32.6
Azure 1829 30 2 6 2.48 2.28 2.5 0.0 5.8 10.16
Google 1M 2.5 0.0375 0.083 1.0 0.0 1.68 2.08 0.17 0.2

Table 8: Characteristics of the traces of the experiments

5.3 Execution

The reproducibility of the experiments is crucial for their validity and for other researchers
to extend them. An experiment is reproducible if the methods are sufficiently well described
and the artifacts available so that others running the same experiment will get identical
results. We run the experiments on a personal laptop with an Apple M1 Max chip, 1TB
SSD storage, and 32 GB memory. We run the experiments using OpenDC !5, an open-
source datacenter discrete event simulator developed by AtLarge, with multiple years of
development and operation. Due to its discrete event model, OpenDC generates the same
results regardless of the hardware used. The execution of each configuration lasts about 1-3
minutes, and the execution of each configuration has been repeated 20 times. All artifacts,

Shttps://opendc.org/

75

including the traces used in the experiment, are available in https://github.com/aratz
-lasa/opendc.

5.4 General requirements

FEach experiment has its requirements based on the extension they evaluate. However,
there is a set of common non-functional requirements that all experiments have. We list
them below:

NFR Make reproducible experiments

For an experiment to be reliable, it must be reproducible since today; there are
notorious problems with the inability to reproduce scientific experiments. For this
reason, it is necessary to publicly offer both the raw results of the experiments and
the software artifacts used to carry them out.

NFR Make the experiment software artifacts reusable

Considering current programming standards, it is important to implement extensible
and modular software artifacts so that it is easy to reuse or extend them for other
projects.

NFR Provide experiments with different workloads.

To offer greater insight and reliability of the experiment, it is necessary to use different
workloads. They must be different in terms of characteristics, such as the duration
of each task, the resource requirements, the nature of the workload, etc.

5.5 Extension 1: Reducing VM waiting times and slowdowns using
reservations

In the first experiment, we evaluate the use case where users want to make reservations.
Still, some of the mapped programming abstractions of industrial schedulers cannot imple-
ment it. Therefore, we evaluate the benefits of providing reservation programmability in a
scheduler in this experiment. We demonstrate that we can obtain higher performance on
VM scheduling by using reservations. Reservation is a programming abstraction allowing
users to submit scheduling requests that will be executed in the long term. That is, it
allows users to provision resources ahead of time. Usually, reservation systems are used
by applications running repetitive jobs that may know they will run a job several hours
or days in advance. Studies show that many production jobs are long-running and are
submitted periodically, which would benefit from a reservation system [10, 24].

In Section 4.7, with the mapping of industrial schedulers, we see that Kubernetes and
Spark do not offer the ability to make reservations, while SLURM and Condor do not
allow users to submit estimates. In addition, the schedulers that allow reservations do
not leverage this capability to optimize scheduling. Most expose a cron-like programming
abstraction so users can run a job periodically on a given schedule. But they do not
apply any optimization algorithm to the reservations. In other words, reservations are
used to facilitate user interaction, not to improve scheduling performance. Therefore,
in this experiment, we extend a scheduler to provide reservation programmability to the

76

users. Then, we apply an optimization algorithm to improve scheduling key metrics such
as waiting times and slowdowns.

5.5.1 Requirements

Before designing the experiment and the API extension, we identified specific functional
requirements for the experiment, and we present them below:

FR Enable expression of reservations on datacenter scheduler APIs

The main objective of this experiment is to implement a datacenter API that offers
the ability to make reservations. We hypothesize that it is necessary to offer this ca-
pability to obtain scheduling performance improvements, which is impossible without
reservations. This occurs because reservations enable planning ahead of scheduling
and greater insight into the workload. These two characteristics are the following
two listed requirements.

FR Enable scheduling optimizations through plan-ahead mechanisms

Through reservations, the extended API allows the datacenter provider to plan ahead
of schedule. In other words, to decide how and when you will provision the reser-
vations. This offers a great opportunity to apply optimizations to the scheduling
algorithm.

FR Enable scheduling optimizations through workload estimates

Reservations allow the ability to plan to be combined with greater insights about
the workload. Users submit estimates of execution time or other workload charac-
teristics, offering the greater potential to optimize scheduling. Datacenter providers
can analyze and generate estimates of reservation requests using artificial intelligence
techniques. However, not always accurate enough, and we believe that abstracting
the user from specifying the estimates (if any) implies a sacrifice in performance.

5.5.2 System model

To evaluate the extension of a system with reservation programmability, we model VM
scheduling in a datacenter. The datacenter has tenants, and there is a specific category
of jobs that are long-running and periodically submitted [43], which are provisioned into
VMs (@ and @ in Figure 4). The VMs run for some time, and when they finish, they
release the used resources. The physical machines of the datacenters are heterogeneous
regarding resources; they have different combinations of CPU cores and frequencies. The
scheduling requests specify the number of CPU cores, the frequency in MHz of the cores,
and the amount of memory. That is to say, the lease action is limited to specifying resource
requirements. Users consume 100% of the resources they have specified in the request.
Therefore, the scheduler does not over-subscribe the physical machines. Otherwise, there
will be interference and resource contention between the tenants.

To perform scheduling requests, the scheduler offers the following API to users:

e lease(requirements): vm: the user passes a list of resource requirements, the
provider boots up a virtual machine with those requirements, and returns the machine

7

&

T [12 | Legend
O
Queue Tenant
DC Scheduler T -, "
1
% O \II\1/I-1 allocated
[Phy 1 Phy 2 : to Tt
gl |
T1-| (T2 || |[T1-| |T2- |, > Actions
VM1 VM1 | | VM2 VM2 _ _, Algorithmic
optimization

Figure 4: Reservations experiment system model.

to the user. The requirements are composed of CPU cores, CPU capacity, and
memory.

e release(vm): the user passes a machine, and the provider shuts it down.

5.5.3 Model extension

A large part of the jobs executed in clusters offers automated predictability systems that
periodically submit them. Many of these are resource intensive and run for long hours.
As these jobs are executed periodically, several investigations confirm that their runtime
can be accurately predicted. In addition, users know in advance that they will have to run
them. Therefore, users and datacenter providers can benefit from using reservations.

To enable reservations, we extend the system by modifying the action, includ-
ing two additional parameters: runtime estimates and a specified provisioning time for
future reservations. The runtime estimates are objects, and the datetimes
are objects. When a user submits a reservation request, instead of immediately
provisioning it, the scheduler adds the request to a reservation queue (@) alongside other
pending reservations. During this time, the scheduler applies algorithmic optimizations to
improve future provisioning (@). In our experiment, we employ a simple EFT scheduling
policy [41] to optimize the reservation queue by prioritizing tasks with earlier estimated
finish times, ensuring that resources are allocated efficiently and effectively. Tasks without
reservation are scheduled according to the FIFO policy. Once the specified provisioning
time arrives, the scheduler provisions the reserved resources into a VM (@), fulfilling the
user’s reservation request. In Listing 5.5.3, we provide an example of the extension, show-
casing the syntax for reservations.

Provision : Lease

UserResource<type:app, id:1,
runtime:1h>

IN SchedulerResource<type:vm, cores:8,
cpu—freq:2.4Ghz, memory:32Ghb>

WHEN Event<day:11, month:12, year:2023>

The extended programming model offered by the scheduler is the following:

78

e lease(requirements, datetime, estimate): vm: the user specifies the resource
requirements of the virtual machine, the datetime of the submission for performing
reservations to the future, and the runtime estimate that is used for providing insights
for optimizing reservations. If the datetime is not empty, the scheduler stores the
request in its reservation system and returns a VM object that has not yet been
booted up. The future VM contains a callback to be notified when the machine is
initialized. But if the datetime is not specified, the scheduler processes it as a regular
lease action and immediately provisions the VM.

5.5.4 Alternatives

Prior to finalizing the implementation of the reservations API, we explored various al-
ternatives to fulfill the system extension requirements. Next, we will briefly explain the
alternatives and argue our chosen design.

Reservation without estimates. This is the simplest alternative for users. Users
specify the requirements of their VMs and submit the requests to the datacenter. The
requirements specify the resources they need and when to provision them. However, it
does not include expected execution times or metrics such as average utilization. Therefore,
the datacenter generates and applies machine learning techniques to analyze the request
and generate a profile. This profile is necessary to apply optimizations to reservation
scheduling.

Reservation with estimates. This is the alternative we chose to implement as the
extension of the experiment. Apart from specifying the requirements, users also specify
the estimate of the execution time. This implies greater implementation complexity for
the user, but we consider the sacrifice of performance gains is not worth it in exchange
for greater simplicity. Since users have business knowledge and have a greater facility to
calculate estimates of their workload, this does not prevent the provider from applying
techniques to analyze and classify the requests. The two can be combined.

5.5.5 Industrial schedulers

In this section, we explain how the industrial schedulers that we identified in Section 3
and 4 would implement the abstraction that we evaluated in this experiment and if they
do not have it in their API, how they would implement it.

Kubernetes allows you to specify a date in the future using the cronjob. But it doesn’t
allow executing the job only once. Therefore, the user must delete the cronjob, or else the
job has to have logic to auto-delete after completion.

apiVersion: batch/v1
kind: CronJob
metadata:
name: example
metadata:
annotations:

runtime: 1h

79

10

11

12

13

14

15

16

spec:
schedule: "0 0 29 8"
jobTemplate:
spec:
template:
spec:
containers:
- name: hello
image: example:1.28

In this example, the CronJob manifest executes the user task at 0 0 29 8, which states
that the task must be started on the 29th of August of this year. Apart from the reservation
datetime, it also specifies the runtime of the application, which is one hour, by making use
of annotations, which is for specifying metadata.

SLURM can implement reservations partially, as it offers the ability to specify a date-
time in the future but does not allow the user to provide metadata about the runtime.
Therefore, we show how SLURM would implement the reservation extension with its cur-
rent API and a custom extension below.

In this example, the argument begin specifies the date and time the job must be provi-
sioned and run.

sbatch —job-—name=example —begin=2023—08—-29T00:00:00
—metadata=runtime:1h run.sh

In this example, the argument begin specifies the date and time the job must be provi-
sioned and run. This parameter already exists in SLURM. However, the user specifies a
second parameter named metadata, which specifies the job’s expected runtime of one hour
runtime:1h.

Spark cannot implement reservations among the industrial schedulers since it does not
offer them. Next, we show how the scheduler could implement reservations in its API.

./ bin/spark—submit
—~class org.apache.spark.examples.SparkPi
—master spark://207.184.161.138:7077
——conf spark.reservation.datetime=2024—01—-20T12:34:00
—conf spark.reservation.estimate=1h
/path/to/examples. jar

In this example, a new configuration flag is created spark.reservation.datetime, which
is set to 2024-01-20T12:34:00, specifying that the application should start at a specific
datetime. Moreover, a second flag is spark.reservation.estimate is created, which is set to
1h, specifying that the application is expected to run for one hour. This is just one option
for implementing reservation in Spark, but the flag’s name, format, etc., can differ.

80

10

11

12

13

14

15

16

17

18

19

Condor implements reservations partially, as it offers the ability to specify a deferral
time, that is, the ability to specify a future time when users want to provision the resources.
Still, it does not allow the user to provide the expected runtime. Therefore, next, we show
how Condor would implement the reservation extension with its current API and a custom
extension.

executable = example
arguments SomeArgument

deferral_time = 1693267200
metadata_runtime = 1h

queue

In this example, the job’s submit description file specifies in Unix epoch that the job
will begin execution on August 29th, 2023, at 12:00 pm, through an already existing
deferral_time parameter. However, the user specifies a second parameter named meta-
data_ runtime, which specifies the job’s expected runtime of one hour 1h.

Airflow lets users specify crontabs and limit runtimes, but also, users can specify specific
dates and times to run their jobs without having to be recurring as in crontab. Here is a
specific example:

from datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator

def example():
return 'Hello world from first Airflow DAG!'

dag = DAG('hello_world', description='Hello World DAG')
default_args = {

'start_date': datetime(2023, 8, 29, 0, 0),
'end_date': datetime(2023, 8, 29, 1, 0),

example_operator = PythonOperator(task_id='example_task',\\
python_callable=example, dag=dag, default_args=default_args)

example_operator

In this example, the start date argument is set to 2023-08-29 at 00:00 and is passed as
default _args to the DAG, which tells Airflows the time at which the workflow must start
running. With the starting date, the end date argument is set to2023-08-29 at 01:00,
specifying that the application is expected to finish after running one hour.

81

5.5.6 Configuration and design of the experiment

We aim to conduct experiments that prove the limitations of a scheduler that does not
provide reservation programming abstractions. Table 9 summarizes this extension’s con-
figurations. Experiment configurations comprise three dimensions: trace, utilization, and
reservation ratio. Below, each dimension and the different choices are explained, in addition
to the metrics collected in the experiments.

Traces Utilizations Reservation ratios
Bitbrains 0.750.8 0.85 0.0 0.5 1.0
Azure 0.750.80.85 0.00.51.0
Google 0.750.80.85 0.00.51.0

Table 9: An overview of all the configurations of the reservation extension experiment.

Utilization and reservation ratio Apart from the trace, different combinations of
resource utilization and reservation ratio are evaluated in the experiment.

For the experiment to be complete and valid, we experiment with different proportions
of resource utilization. To do this, each trace’s average CPU and memory use has been
calculated, and we generate an infrastructure topology that offers the desired utilization.
We experiment with three different utilizations: 75%, 80%, and 85%.

Finally, we experiment with different reservation ratios. The reservation ratio is the
proportion of VM requests submitted through the reservation programming abstractions,
submitted in advance before wanting to boot up. We opted for three ratios: 0, 0.5, and 1.0
to keep the experiment and conclusions simple. 0 represents the neutral scenario in which
reservation programmability is not available. 0.5 represents when half of the requests are
made through reservations, and 1.0 is when all are reservations.

Metrics We apply the EFT heuristic to reservations to optimize the performance of the
VMs. The performance of this experiment is defined by the metrics of waiting time and
slowdown. Therefore, in this experiment, we will observe how the values of these metrics
change in each of the configurations presented in table 9. The response time metrics and
the use of a VM remain the same, regardless of the reservation programmability, since
these metrics depend on the internal characteristics of the trace. However, we calculated
the utilization to verify that the topology calculation was correct.

OpenDC allows exporting many metrics to analyze the simulation results. However, for
our experiment, we only need a subset of them. Specifically, we only need the metrics to
calculate the waiting time, the slowdown, and the utilization. We present the metrics we
collect for the analysis of the experiment in Table 10.

5.5.7 Implementation of a Software Prototype

This section explains the prototype we develop to experiment. To experiment, we use
OpenDC, an open-source datacenter discrete event simulator developed by AtLarge, with
multiple years of development and operation. In the experiment, we extend OpenDC to

82

Name Unit Description

vm.id - Unique identifier of the VM

vm.provision time Epoch (ms) The instant at which the server was enqueued
for the scheduler

vm.boot time Epoch (ms) The instant at which the server booted

vim.timestamp Epoch (ms) The timestamp of the current VM metric entry

machine.id - Unique identifier of the physical machine of the
datacenter

machine.cpu utilization - The CPU utilization of the machine

machine.cpu count - The number of logical processor cores available
for this machine

machine.timestamp Epoch (ms) The timestamp of the current physical machine

metric entry

Table 10: The metrics that are recorded for the reservations extension evaluation.

include the reservation ability, add a new allocation policy, and optimize and fix bugs in
the code. Below we explain the changes we make. The original code of the extension is
available in https://github.com/aratz-lasa/opendc/tree/master/opendc-experime
nts/reservation.

Reservation service We implement our version of the ComputeService component to
implement the reservation service. This component is responsible for carrying out the
scheduling requests of the traces. Our extension includes the ability to simulate reser-
vations. To simulate reservations, we extend the OpenDC compute service algorithm,
which now has three extra steps: (1) splitting the trace into reservations and online (non-
reservation) scheduling requests, (2) applying heuristics to reservation requests to opti-
mize scheduling, and (3) combining and scheduling reservations and online requests. In
the simulation, both reservation and online requests have a start time. In the case of
reservations, the start time represents when the reservation has to be scheduled, while in
non-reservations, it represents the arrival time of the request. For this reason, online re-
quests must always be simulated by sorting them by start time since this is how the arrival
of a request is simulated.

In Algorithm 1, we present the high-level algorithm that implements the reservation
simulation logic. Based on the reservation ratio, the first step is to divide the trace into two
groups, non-reservation (online) and reservation requests. For example, if the reservation
ratio is 0.5, the trace is divided into two equal parts. One group simulates the requests
that do not use the reservation service, and the other group simulates those that submit
reservations. Those that do not use the reservation service are sorted on a First-Come-
First-Service basis (in other words, by the start time) to simulate the arrival of requests.
However, as reservations are submitted in advance, they are optimized by sorting them
by the EFT heuristic. Once both groups have been put into sorted queues, the requests
begin to be scheduled. Until both queues are empty, the heads of the reservations and
no-reservation queues are queried, and the request with the earliest start time is popped.
By looking only at the heads of the queues, we are simulating the decision of whether we

83

must schedule first a new online request that just arrived or the next reservation request
that we optimize in advance. Note that we do not alter the EFT ordering applied to the
reservations by looking only at the heads. Finally, we wait until the request has been
scheduled, schedule the request, and check back the queues.

Once a request is scheduled, the OpenDC scheduler decides which physical machine to
place the request on. It is important to understand the difference between our algorithm,
which decides how to optimize reservations and whether to schedule an online request or
a reservation first and the OpenDC scheduler, which decides which machine to place a
request. This separation is due to the internal architecture of OpenDC, but in the real
world, these two functions may be combined.

The ordering of reservations applying for the EFT heuristic works as follows: (1) we
generate time intervals for the duration of the trace, (2) we obtain the reservation requests
that their start time is within the interval, (3) we order the requests according to their
expected finish time (start time plus the expected runtime), and finally (4) we append
those requests into the reservation queue. The intervals are used, so requests that start
very late but end very early do not block the other requests and increase their waiting
times. So, the requests are ordered by the earliest finish time for each interval, not the
entire trace duration. Also, it is important to explain that the intervals are generated by
calculating the average start time frequency of the requests. In other words, how often a
request must be scheduled based on their start times.

Secondary optimizations and bug fixes In addition to implementing the reservation
service, we also extend OpenDC to implement a set of optimizations:

e A new allocation policy that prioritizes Virtual Machines that best fit the resource
requirements. In other words, this policy evaluates that the physical machine would
leave fewer resources available if the VM were assigned. We implement this policy
to try to get a higher bin packing. This gives us more significant and precise control
over the overall utilization throughout the experiment.

e A new scheduling mechanism that does not stop processing requests at the first
failure. The current scheduling mechanism has a queue of scheduling requests, and
as soon as a request fails to allocate, it stops scheduling. However, there are cases
where a request cannot be allocated, but the next ones in the queue can. Therefore,
we update the code to iterate over all requests instead of stopping on the first failed
attempt.

e Export utilization metrics of the simulation. OpenDC calculates each machine’s CPU
utilization but does not export it. Therefore, we modify the code to be able to export
resource usage.

e A bug fix for VMs simulation. There was a bug when simulating VMs, in which the
CPU frequency of each core was miscalculated. The CPU frequency of each core was
set to the aggregated frequency of all the CPU cores.

84

Algorithm 1: Reservation simulation algorithm

1 Function ReservationSimulation(trace, reservationRatio):

®w N O Ok~ W N

10
11
12
13
14
15

16
17
18
19
20
21
22
23

24

25

26

27

28

online, reservations = splitTrace(trace, reservationRatio)
online = sortByFCFS(online)
reservations = sortByHeuristicEF T (reservations)
for 0 < reservation.size or 0 < fcfs.size do
request = popNextEarliestStartTime(fcfs, reservations)
sleep(request.start Time)
schedule(request)

Function splitTrace(trace, reservationRatio):

shuffle(trace)

splitlndex = trace.size x reservationRatio
reservations = trace[0..splitIndex|

fefs = trace|splitIndex..trace.size|

return fcfs, reservations

Function sortByHeuristicEFT (trace):

intervals = getTimelntervals(trace)
traceEFT = List()
for interval in intervals do
intervalRequests = List()
for request in trace do
if interval.t0 < request.startTime and interval.stopTime < range.tl
then
L intervalRequests.append(request)

sortedRequests = sortByStopTime(intervalRequests)
| traceEFT.append(sortedRequests)

return traceEFT

85

5.5.8 Results

This section presents the experiment results for the Bitbrains, Azure, and Google traces.
In Figures 5, 6 and 7, we present the waiting times and slowdowns for each combination
of utilization and reservation ratio. The objective is to show the differences in scheduling
performance between the configurations that use the reservations API and those that do
not. On the upper left of the figures, we present the ECDF of the waiting times, and
on the upper right, the ECDF of the slowdown, which is the sum of waiting time and
execution time, normalized by running time. The intuition behind it is that the slowdown
will also be reduced if the waiting time is reduced. Finally, on the lower middle, we present
the average bars of slowdowns per configuration to learn how the results of the ECDF are
reflected in averages.

Bitbrains In the case of Bitbrains, the waiting times and slowdowns are the same for
different reservation ratios. In other words, a higher or lower percentage of reservation
requests does not affect the waiting time or slowdowns. Similarly, the average slowdowns
are practically the same with different reservation ratios. However, there is a clear trend
regarding utilization, waiting times, and slowdowns. The higher the utilization, the higher
the proportion of waiting times and slowdowns.

Azure Regarding Azure, in the waiting times, we see that in the 75% utilization, the
proportions are the same for different reservation proportions. In the 80% utilization, when
using reservations, the 50th percentile times increase around 2.5 hours (500%). However,
when the utilization is 85%, lower times are obtained when reservations are used. In 85%
utilization, times are reduced by 35 hours (43%), compared to 0% reservations. Similarly,
the 60th percentile slowdown is increased 150% on 80% utilization, but the 50th percentile
is reduced 70% on 85% utilization when using reservations API.

Moreover, there is a clear trend in all configurations where waiting time and slowdown
tails increase as utilization increases. This is expected since the higher the utilization,
the higher the probability that there will not be an instance with enough available re-
sources. Also, it is essential to remember that we do not oversubscribe the instances in
this experiment.

All these differences in the ECDF are projected in the average slowdown of the requests.
In the 75% and 80% utilizations, the differences are not significant enough to be appre-
ciated. However, at 85% utilization, as we see, the differences reach 25%, so they affect
average slowdowns. When there are 0% reservation requests, the average slowdown is
around 250; when using reservations, the slowdown drops 60 points, with 50% and 100%
reservations, respectively.

Google . Finally, in the results of the Google trace, we see two clear trends in the slow-
downs and waiting times for all configurations. The first is that the greater the utilization,
the greater the waiting time of the requests, both at the beginning and in the tail of the
requests. The second is that the ECDF resulrs are the same at the beginning, but the
use of reservations improves the results in the tail. In the 85th, 90th and 95th percentiles,

86

1.00 1.00
= - - ’—-—'—/_/r "=
= 0.751 = 0.75
S 2
EO 50 éO.SO‘
2 2
A 0.251 R 0.25
0.00 T T T 0.00 T T T
10° 10? 102 10° 10* 102 10%
Waiting time [h] Slowdown
Utilization/Ratio Utilization/Ratio
0.75/0.0 0.8/0.0 0.85/0.0 0.75/0.0 0.8/0.0 0.85/0.0
0.75/0.5 0.8/0.5 0.85/0.5 0.75/0.5 0.8/0.5 0.85/0.5
—=— (.75/1.0 0.8/1.0 0.85/1.0 —=— (.75/1.0 0.8/1.0 0.85/1.0
Ear——0 —
g
o
z
<
@ 2
&)
D
S
§ e
- 0 T T e T T -
O G O N GO D& D
S S S
QA QO Q7 Q7
Utilization/Ratio

Figure 5: Waiting times (upper left) and slowdown (upper right) ECDF, and average
slowdown (lower middle) of Bitbrains trace. Each line and bar represents a different
<Utilization>/<Reservation ratio> configuration.

the 1 reservation ratio reduces the slowdown by 23% 38% and 53%, in 75%, 80% and 85%
utilization, respectively.

When the reservation ratio is 0%, with the utilization of 75%, the average slowdown is
around 1.7; with 80%, it is 2.3, and with 85%, it is 2.8. When going to a 50% reservation
ratio, the results are practically the same. But with a 100% reservation ratio, the results
improve by reducing the average slowdowns by 15%, 13% and 13%, respectively.

5.5.9 Discussion

Our main findings from this experiment are:

MF1.1 In all traces except for Bitbrains, the slowdowns and waiting times are reduced by

increasing the number of reservation requests.

MF1.2 When the user does not know when she will need to provision resources or the

expected runtime, the reservation system does not improve performance. Therefore,
it is necessary to offer the reservations as programming abstractions since automating
the reservation logic in the scheduler for every request is impossible.

87

Proportion
S e
at ~J o
o ot o

I

[\]

ot
L

0.00

QA 5 9 D H D D b

SN NN RN
(@\ (@\ (@\ MO A %3\ %3\ %3\
TR TG

Utilization/Ratio

— 1.00 —
- -12 sld. . g
% = 0.75 1 (150%)
-2.5h(500%) 7 2 gl
—_— <= 35h(43%) 2 0.501 68 sld.
+.// & (70%)
0251)
T T 0.00 T T T
10° 10t 10° 10t 10% 10%
Waiting time [h] Slowdown
Utilization/Ratio Utilization/Ratio
0.75/0.0 0.8/0.0 0.85/0.0 0.75/0.0 0.8/0.0 0.85/0.0
0.75/0.5 0.8/0.5 0.85/0.5 0.75/0.5 0.8/0.5 0.85/0.5
—=— (.75/1.0 0.8/1.0 0.85/1.0 —=— (.75/1.0 0.8/1.0 0.85/1.0
25% 25%
= - 1 I
2 2001
2
£ 100 A — =
d —_— p—
%
>
< ol K — B x T W 3

Figure 6: Waiting times (upper left) and slowdown (upper right) ECDF, and aver-
age slowdown (lower middle) of Azure trace. Each line and bar represents a different
<Utilization>/<Reservation ratio> configuration.

MF1.4 When implementing reservation programmability, it is necessary to consider the ex-
pected workload characteristics, the algorithm for optimizing reservations, and the
interplay between them.

MF1.3 The lack of performance improvement differences in Bitbrains is because most re-
quests run for the entire duration of the experiments.

This experiment aims to demonstrate that schedulers may sacrifice performance in ex-
change for simplicity if they do not offer reservation programmability to their users. The
main takeaway from the results of this experiment is that in all configurations, except for
Bitbrains, performance increases in terms of lower waiting times and slowdowns. This im-
provement is achieved by providing reservation programmability to the users. Reservations
reduce slowdown by as much as 70% for the Azure trace, and 53% for Google trace, but
not as much for Bitbrains. Moreover, the results are dependent on the durations of the
tasks in the trace.

All these performance improvements are achieved using EFT, effortless and naive schedul-
ing heuristic. However, several studies improve performance by implementing more com-

88

1.00 1.00 ———
= 0.751 = 0.751 1.5,2.5,3.5sld.
£ S (23,38,53%)
2 0.50 g 0501
5 5
&~ 0.251 & 0.951
0.00 o ; , , ;
T o T 000 "
Waiting time [h] Slowdown
Utilization/Ratio Utilization/Ratio
0.75/0.0 0.8/0.0 0.85/0.0 0.75/0.0 0.8/0.0 0.85/0.0
0.75/0.5 0.8/0.5 0.85/0.5 0.75/0.5 0.8/0.5 0.85/0.5
—=— (.75/1.0 0.8/1.0 0.85/1.0 —=— 0.75/1.0 0.8/1.0 0.85/1.0
§ 13%
3 _ 13% = L
z
kS 2 15% %
2 - _
z .
o0
<
g A
Z0

QA b QA O b Q NR) Q

NN N N NN
IR ORI A
NREENCEENG NEEEENGEENE

Q
Utilization/Ratio

Figure 7: Waiting times (upper left) and slowdown (upper right) ECDF, and aver-
age slowdown (lower middle) of Google trace. Each line and bar represents a different
<Utilization>/<Reservation ratio> configuration.

plex algorithms such as MILP [43].

Furthermore, this experiment demonstrates that using reservations improves perfor-
mance and that offering it as a programming abstraction is necessary. The user does
not always know a VM’s start time and expected running time in advance. Therefore, the
scheduler cannot internally implement the reservation logic without exposing programma-
bility to the user. In our experiments, reservation ratios of 0 and 0.5 simulate this type of
neutral case.

The differences in performance improvement between the traces are due to different
factors related to the implemented EFT heuristic and the characteristics of each trace.
However, Bitbrains does not show any significant performance improvement at all. This is
because the start times are much less spread out than in the other traces. Most requests are
collapsed at the beginning of the trace, and the VM runtimes are the same. This is because,
in the original trace, most traces are already running from the beginning and run for the
entire duration. Therefore, the benefits of the EFT heuristic are reduced significantly. So,
this exemplifies that the schedulers must take into account both the characteristics of the
workload, as well as the algorithm we use to optimize reservations when offering reservation

89

programmability to users.

5.6 Extension 2: Reducing VM total times using container migrations

In the second experiment, we evaluate the use case where the scheduler wants to reduce
oversubscription and interferences between tenants using container migrations. Still, some
of the mapped programming abstractions of industrial schedulers cannot implement it.
Therefore, in this experiment, we want to demonstrate the benefits obtained in datacenter
scheduling by leveraging container migrations. Users underutilize resources, and conse-
quently, datacenter providers oversubscribe resources. This allows them to obtain greater
utilization of the resources in the datacenter. However, this can lead to a resource being
oversubscribed and users experiencing interference with each other. Moreover, many other
phenomena cause interferences despite not being oversubscribed. To reduce interference
in those cases, datacenter providers could migrate VMs or let the interference continue.
However, another alternative is to let tenants know about the oversubscription and inter-
ferences so that they can take action to reduce the workload running on those VMs. For
example, if users run a K8s cluster on top of their provisioned VMs, they could migrate out
pods from oversubscribed VMs. Since pods are smaller than VMs, the migrations will be
more efficient, as well as the packing. Moreover, the user has the business-logic context to
make the best decisions on reducing the workload, such as what pods should be migrated
or stopped.

In the analysis of the mainstream schedulers, we see that none of the schedulers let users
know about the oversubscription and interferences. Mainly, the information they offer is
about the resource consumption of the VMs, not the underlying physical resources. So, they
do not have a way of knowing whether their VMs are oversubscribed or low-performing.
Therefore, in this experiment, we implement a scheduling extension where users are notified
when their VMs are oversubscribed, and consequently, they perform container migrations.
This way, we show that in some scenarios, better scheduling performance is achieved by
offering users programmability that allows them to get callbacks to implement container
migrations.

5.6.1 Requirements

Before designing the experiment and the API extension, we identified specific functional
requirements for the experiment, and we present them below:

FR Enable expression of oversubscription on datacenter scheduler APIs

The main requirement of this experiment is to have datacenter schedulers express
oversubscription to users. Our hypothesis is based on the fact that current datacen-
ters abstract users from oversubscriptions. This offers greater simplicity but sacrifices
performance improvements that can only be obtained with the user’s collaboration
since users have the necessary knowledge about workload and business, which allows
for taking optimal actions.

FR Enable container migrations.

90

. Legend
O Orchestrator

allocated to K1

Phy2 K1-c1| Container

managed by K1
| K3-VM1 K2-VM2
K2-C3

_ ----» Callback

-3 Monitoring

—>» Actions

Figure 8: Container migrations experiment system model.

Specifically, with this experiment, we enable container migrations. container migra-
tions are performed for tasks running inside provisioned virtual machines rather than
the virtual machines themselves. In this way, we hope that the migration capacity
and the packing of tasks will be greater when there are oversubscriptions in the
datacenter.

FR Provide security and privacy.

By enabling oversubscription expression in the datacenter, the provider offers infor-
mation about the underlying resources and possible aggregated data about other
tenants. This has the potential to generate security breaches over. Therefore, the
API must be able to enable the oversubscription expression while not offering com-
promised information about the underlying resources.

5.6.2 System model

To conduct this experiment, we will simulate the oversubscription scenario within a dat-
acenter environment. In the datacenter, multiple tenants engage in leasing and releasing
virtual machines, as illustrated by @ and @ in Figure 8. Each tenant establishes a Kuber-
netes cluster (J8@l) on the leased virtual machines, deploying multiple batch tasks within
the Kubernetes environment. The Kubernetes cluster consists of several nodes (JEEEAYEN)
representing virtual machines, where application containers are launched (@). The number
of nodes varies across clusters, reflecting the unique workload requirements of each ten-
ant. This Kubernetes layer operates as a secondary scheduling layer atop the datacenter
scheduling, with tenants provisioning virtual machines and deploying Kubernetes nodes
to establish their clusters. Once the task load subsides, the virtual machines are released,
and the Kubernetes cluster is dismantled.

However, the utilization of resources within Kubernetes clusters can sometimes be sub-
optimal, leading to underutilization. To address this, the datacenter provider resorts to
resource oversubscription in order to maximize performance. Consequently, the aggre-
gate virtual resource allocation on a physical machine may exceed the underlying physical
resources. When a Kubernetes cluster experiences high load under such conditions, in-
terference and reduced performance may occur among tenants sharing the same physical
machine. In such cases, the datacenter scheduler may attempt to migrate virtual machines

91

to alternative physical machines, aiming to mitigate interference and improve overall per-
formance.

The datacenter provides users with a simplified API, consisting of the following opera-
tions:

e lease(requirements): vm: Users specify their resource requirements, and the
provider provisions a virtual machine that meets those specifications. The API call
returns the allocated virtual machine to the user. Resource requirements typically
include CPU cores, CPU capacity, and memory.

e release(vm): Users release a previously leased virtual machine by passing it as a
parameter to the API call, and the provider shuts down the specified machine.

5.6.3 Model extension

In this experiment, we expand on the model described in the previous section by introduc-
ing the capability for the datacenter scheduler (@) to initiate callbacks to the user when
the underlying resources are oversubscribed. The user includes a callback function named
requestUserMigration, which the scheduler invokes. The callback function receives a
target virtual machine and the amount of CPU capacity that is oversubscribed as argu-
ments. In response, the orchestrator migrates (@) selected containers (specifically pods
in this case) and provides the amount of CPU capacity to be reduced through container
migrations. Migration has a cost proportional to the size of the VM migrated [11], so
this approach aims to improve task performance by reducing the migration size, as pods
are smaller than nodes. Consequently, virtual machines achieve better resource packing,
leading to reduced interference and improved performance. In Listing 5.6.3, we provide an
example of the extension, showcasing the syntax for migrations:

Communicate

CommunicationProcess<type:callback,>
<url:orchestratorhost/callback>

IN UserResource<type:app, id:1>

WHEN Event<interference:10%>

The extended programming model offered by the scheduler includes the following func-
tions:

e communicate(callback, event): This function allows the user to specify a callback
and an associated event that triggers the callback, which in this case is a migration
event. The scheduler receives and stores the callback and associated event, ready to
be executed when oversubscription occurs and user migrations need to be performed.

e requestUserMigration(vm, cpuCapacity) migratedCpuCapacity: In the user-submitted

callback function, the datacenter scheduler provides the oversubscribed virtual ma-
chine (vm) and the amount of CPU capacity (cpuCapacity) that needs to be migrated.
The user performs necessary calculations and returns the amount of CPU capacity
from the requested migration that will be migrated.

92

5.6.4 Alternatives

Prior to finalizing the implementation of the migrations API, we explored various alterna-
tives to fulfill the system extension requirements. Next, we will provide a brief overview
of the alternative approaches considered and present the rationale behind our chosen de-
sign.

Transparent utilization. The simplest alternative is for the datacenter provider to of-
fer live metrics of the underlying physical machines. Users can view the utilization of
the physical machine when provisioning a virtual machine, allowing them to determine if
the machine is oversubscribed and if there are interferences with other tenants. This ap-
proach enables tenants to perform container migrations when they detect oversubscription
or implement optimizations as resource usage grows. However, this model raises privacy
and security concerns since users gain direct access to information about the underly-
ing resources and can take actions that may conflict with the interests of the datacenter
provider.

Oversubscription notification. Another alternative to prevent users from accessing
live metrics of the physical machine directly is to replace them with notifications. The
datacenter provider sends notifications to users when the underlying physical machine is
oversubscribed or experiencing interference. Users receive information only when there is
an oversubscription, prompting them to take necessary actions. However, this alternative
can make coordination between tenants challenging, similar to the transparent utilization
approach. Each tenant independently decides whether to perform container migrations,
which may lead to scenarios where all tenants migrate simultaneously or none of them
migrate while expecting others to migrate.

Oversubscription callback. The third alternative offers a balance between security
and coordination among users. Instead of receiving notifications, users provide a callback
function to the provider. This callback function receives the amount of CPU capacity that
the provider requests the user to migrate, and in response, the user specifies the amount of
CPU capacity that will be migrated. This bidirectional communication between the user
and the datacenter allows the provider to act as a coordinator among the users. Implement-
ing this alternative requires more complexity from the user’s perspective, but we believe
that the potential performance gains outweigh the added complexity. Therefore, we have
chosen to implement this third alternative as the model extension for the experiment.

5.6.5 Industrial schedulers

In this section, we explain how the industrial schedulers that we identified in Section 3
and 4 would implement the abstraction that we evaluated in this experiment and if they
do not have it in their API, how they would implement it.

Kubernetes users submit callbacks for each of the container lifecycle events they are
interested in, allowing the execution of a callback when the pod changes its state. Next,
we show how the user would specify the migration callback of her application.

93

10

11

12

apiVersion: vl
kind: Pod
metadata:

name: lifecycle-demo

spec:

containers:

- name: example
image: example:1.28
lifecycle:

migration:
exec:
command: ["/tmp/migration.prog"]

In this example, a callback is assigned via the exec.command parameter. In this specific
case, it is specified that the callback is executed when the scheduler requires a migra-
tion. After the container has started, use postStart. Although Kubernetes provides an
abstraction for adding callbacks, there is currently no built-in lifecycle state specifically for
migrations. Therefore, Kubernetes would need to extend its API to include a migration
state and support container migrations effectively.

SLURM offers the ability to add callbacks to specific job events using the strigger
command. Below we present how the user would specify the migration callback of her
application.

strigger —set —jobid=1234
—migration —program=/tmp/ migration . prog

In this example, the program /tmp/migration.prog is executed when the scheduler re-
quires migrations by specifying the —migration flag. So, SLURM already provides an
abstraction for adding callbacks but does not include a migration state to activate the
callbacks. Therefore, SLURM would require an API extension to support container migra-
tions.

Spark also provides the ability to add callbacks, which can be defined in code and set
through a CLI flag. Here is a specific example:

./ bin/spark—submit —class org.apache.spark.examples.SparkPi
—master spark://207.184.161.138:7077
——conf spark.extralisteners=listener.MigrationListener
/path/to/examples. jar

In this example, a configuration flag spark.extraListeners is set to the value listener.
MagrationListener specifies that a custom-made callback is passed to receive up-calls when
migrations are required from the scheduler. The callback is defined in a code file named
listener, and inside it, the listener is implemented as an object named MigrationListener.
In Spark, there is already the abstraction to add callbacks as listeners. However, the

94

10

11

12

13

15

16

17

current Spark API lacks a method specifically for receiving migration requests. To enable
container migrations, Spark would need to extend its API by adding an interface method
for receiving migration requests and implementing the necessary migration logic.

Condor is the only industrial scheduler among the ones analyzed that does not support
callbacks. Consequently, it cannot provide container migrations based on the proposed

alternative extension. Next, we show how the scheduler could implement callbacks in its
APIL

executable
arguments
callback.migration

example
SomeArgument
/tmp/callback.prog

queue

In this example, the callback is implemented in Condor by adding a new parameter
to the submission file callback.migration, which is set to /tmp/callback.prog that specifies
where the program that performs the container migrations is located. The implementation
of callbacks in Condor can take different forms, including using a binary or defining the
callback code directly in the submission file.

Airflow allows users to assign callbacks to tasks, triggering their execution when specific
events occur, such as failures. Next, we present how Spark could use callbacks to implement
container migrations.

from datetime import datetime

from airflow import DAG

from airflow.operators.dummy_operator import DummyOperator
from airflow.operators.python_operator import PythonOperator

def task_migration(context):
vm = context['vm']
cpu_capacity = context['cpu_capacity']def example():
ret 'Hello world from Airflow DAG!'

dag = DAG('hello_world', description='Hello World DAG',
on_migration_callback=task_migration)

example_operator = PythonOperator(task_id='example_task',
python_callable=example, dag=dag)

example_operator

In this example, a function named task migration is executed whenever the scheduler
requires container migrations. A python function is defined and passed to the dag ob-
ject through the on_ migration_ callback argument for setting the callback. While Airflow

95

already offers an abstraction for adding callbacks, it currently lacks a way to specify call-
backs for migrations. To enable container migrations, Airflow would need to extend its API
by introducing a new parameter, such as on_migration_callback, which would receive
migration requests and facilitate the implementation of container migrations.

5.6.6 Configuration and design of the experiment

Our objective is to perform a series of experiments that highlight the limitations of a sched-
uler lacking container migrations programming abstractions. The configurations for this
extension are summarized in Table 11. These experiment configurations encompass three
key dimensions: trace, container migrations, and oversubscription ratio. In the following
sections, we will delve into each dimension and discuss the various choices available, along
with the metrics collected during the experiments.

Traces container migrations Oversubscription ratios
Bitbrains true false 3.04.0 5.0
Azure true false 3.04.0 5.0
Google true false 3.0 4.0 5.0

Table 11: An overview of all the configurations of the oversubscription extension experi-
ment.

In addition to the traces, container migrations, and oversubscription ratios, there is
another dimension to consider: the utilization level and the number of Kubernetes clusters.
For our experiments, we set these two dimensions to a fixed value of 85% utilization and
5 Kubernetes clusters. This means that we calculate the underlying physical topology
of the physical machines based on the average CPU and memory usage observed in each
trace. We then set the CPU capacity and CPU core amounts to 85% of their maximum
values, reflecting the desired utilization level. This fixed configuration allows us to maintain
consistency in the experiments and evaluate the impact of other dimensions, such as traces,
container migrations, and oversubscription ratios, on the performance metrics.

Container Migrations and Utilization Ratio in addition to the trace analysis, we
evaluate various combinations of container migrations and oversubscription ratios to gain
a comprehensive understanding of their impact on system performance.

To ensure the experiment’s completeness and validity, we explore different oversubscrip-
tion ratios. The oversubscription ratio represents the ratio between the number of virtual
CPUs provisioned and the available physical CPUs. For instance, if the oversubscription
ratio is set to 4.0 and there are 2 physical CPUs, the corresponding Kubernetes clusters
will have 2 x 4.0 = 8 CPUs. We conduct experiments using three oversubscription ratios:
3.0, 4.0, and 5.0.

Furthermore, we examine the effects of container and datacenter migrations to simulate
beneficiary and neutral scenarios. When container migrations are enabled, pods are mi-
grated upon detecting oversubscription, while nodes/VMs are migrated when disabled. If
interference persists despite pod migrations, the datacenter initiates subsequent node mi-

96

grations to mitigate performance degradation. By exploring different migration strategies,
we gain insights into their respective impacts on system performance.

Metrics In this experiment, our objective is to enhance performance through migrations,
as we anticipate that migrations will improve resource packing. To evaluate the effective-
ness of migrations, we need to gather three types of metrics: time improvement metrics,
resource packing metrics, and migration-related metrics.

The time improvement metrics enable us to analyze the performance enhancement in
terms of execution time and waiting time. By examining these metrics, we can assess the
impact of migrations on reducing task completion time and overall job waiting time.

The resource packing metrics allow us to understand whether the performance improve-
ments are a result of better resource utilization and allocation. These metrics provide
insights into how effectively resources are utilized and how well the system is able to pack
tasks onto available resources.

Additionally, the migration-related metrics enable us to investigate the effectiveness of
migrations in achieving better resource packing. These metrics help us analyze the number
and frequency of migrations performed, as well as the impact of migrations on resource
allocation and interference reduction.

While OpenDC provides a wide range of available metrics for analyzing simulation re-
sults, we have selected a subset of metrics specifically tailored to our experiment. The
chosen metrics, presented in Table 12, provide us with the necessary data to conduct a
comprehensive analysis of the experiment and evaluate the effectiveness of container mi-
grations in improving performance.

5.6.7 Implementation of a Software Prototype

In this section, we provide an overview of the software prototype we developed for con-
ducting the experiment. The prototype is built upon OpenDC, an open-source datacenter
discrete event simulator created by AtLarge with several years of development and opera-
tion. To incorporate the necessary functionalities for our experiment, we extended OpenDC
to support a second layer of scheduling, perform VM migrations, and execute container
migrations within the second layer. The original code of the extension can be found at
https://github.com/aratz-lasa/opendc/tree/master/opendc-experiments/studyi
ng-apis/migrations.

Second Layer of Scheduling To simulate a second layer of scheduling, similar to Ku-
bernetes running on top of a datacenter, we made modifications and additions to various
components of OpenDC.

Firstly, we expanded the internal representation of virtual machines (VMs) to include
metadata about the Kubernetes pods running on them. This enhancement enables us
to model second-layer tasks and perform scheduling across VMs. Subsequently, we ex-
tended the ComputeService component to manage this metadata effectively, allowing for

97

Name Unit Description

vm.id - Unique identifier of the VM

vm.provision time Epoch (ms) The instant at which the server was enqueued
for the scheduler

vm.boot time Epoch (ms) The instant at which the server booted

vm.stop time Epoch (ms) The instant at which the server stopped

vim.timestamp Epoch (ms) The timestamp of the current VM metric entry

machine.id - Unique identifier of the physical machine of the
datacenter

machine.cpu utilization - The CPU utilization of the machine

machine.cpu count - The number of logical processor cores available
for this machine

machine.timestamp Epoch (ms) The timestamp of the current physical machine

metric entry

migrations.success
migrations.failure

migrations.improvement

The number of migrations that successfully re-
duced oversubscription
The number of migrations that are not able to
reduce oversubscription
The amount of CPU capacity that is causing in-

terference is migrated
migrations.penalty
tions cause

Time duration (ms) The amount of penalty in task durations migra-

Table 12: The metrics that are recorded for the migrations extension evaluation.

operations such as adding, deleting, and moving second-layer pods. Furthermore, we im-
plemented new schedulers that ensure pods are exclusively executed on nodes in their cor-
responding Kubernetes cluster. To achieve this, we extended the metadata and schedulers
to consider resource consumption per Kubernetes node rather than per VM. Additionally,
we developed a modified version of the ComputeServiceHelper component, which deter-
mines when tasks are submitted to the datacenter and when they are removed, thereby
establishing the underlying physical topology.

Oversubscription Detection and Migrations The most complex part of our software
development efforts was implementing the mechanisms for detecting oversubscription and
performing migrations at both the VM and pod levels.

To detect oversubscription, we extended the metadata to track the tasks running on
each machine and their respective CPU capacity consumption. We integrated this detec-
tion mechanism into the scheduling process, so that whenever a new task is scheduled,
oversubscription is analyzed, and migrations are initiated if necessary.

For simulating migrations, we implemented the logic to suspend task execution on one
VM and resume it on another. This involved stopping the work of a task and launching it
on a new VM. We also developed a customized version of the ComputeService component,
which incorporated all the necessary logic for executing both container and VM migrations.

98

The migration procedures for containers and VMs are similar.

To provide a clear understanding of the implementation details, Algorithm 2 presents
the complete pseudocode for resolving any implementation-related doubts.

Secondary Optimizations and Bug Fixes In addition to implementing migrations,
we introduced several optimizations and bug fixes to enhance the functionality and accuracy
of OpenDC:

o We addressed a bug related to simulating interferences between virtual machines. We
discovered that the rate was not being updated correctly, causing tasks to continue
running at their initially requested rate. To rectify this, we made the necessary
adjustments.

e We improved the implementation of the ComputeServiceHelper component. The
default implementation in OpenDC launches tasks as VMs and waits for completion.
However, instead of waiting for VM completion, we modified the component to cal-
culate the task’s ideal runtime and stop the machine after that specific duration. As
a result, we developed a custom ComputeServiceHelper that sets a listener on the
machine and waits until it has finished executing the workload.

o We added new metrics to ensure accurate calculations of time and migration-related
statistics. Although OpenDC already provides metrics for boot time and provisioning
time, it

lacks a metric for recording stop time. Therefore, we introduced this metric. Addi-
tionally, for our experiment, we included additional metrics to measure the number
of migrations performed and evaluate the resulting improvements or penalties.

5.6.8 Assumptions

When conducting experiments of this nature, it is essential to make certain assumptions
to manage the experiment’s complexity effectively. Below, we outline the key assumptions
made in this experiment:

e Each task is assigned a specific CPU count, capacity, and utilization percentage for
the requested resources. However, it is assumed that the workload for each task
remains constant throughout the entire execution.

e Migrations are associated with penalties to simulate the time required to migrate
a VM from one machine to another. The penalty duration is determined based on
the amount of requested memory, with an extension of 1 minute for every 4 GB of
memory requested.

e The results of the experiments are limited to the steady state of the traces. This is
necessary because the traces have a predefined time limit. If the graphs were plotted
from the beginning to the end of the execution, there would be a tail at the end where
tasks continue to be executed, but no new tasks are submitted. This tail does not
accurately represent a real-world scenario, as tasks continuously arrive in an actual
system. To address this, we focus on the steady state of the obtained results. The

99

Algorithm 2: Migrations simulation algorithm

1

2
3
4

[=2 0

© @ N

10
11
12
13
14

15

16
17
18
19
20
21
22
23
24
25
26
27

28

29
30
31
32
33
34
35
36
37
38
39

40

41

Function Migrate (host, oversubscription):

if isPodMigrationsActivated then
migrated = migratePods(host, oversubscription)
oversubscription -= migrated

migrated = migrateNodes(host, oversubscription)
return oversubscription — migrated

Function migratePods (host, oversubscription):
migrated = 0

nodes = nodesSortedByCpuCount(host)

for node in nodes do

if migrated > oversubscription then
L return migrated

return migrated

Function requestUserMigration(node, oversubscription):
migrated = 0
pods = podsSortedByCpuCount(node)
for pod in pods do
nodes = getClusterNodes()
for node in sortByLessRemainingCpus(nodes) do
machine = nodeToMachine|node|
if lisOversubscribed(machine) then
migrated += migratePod(pod, node)
if migrated > oversubscription then
L return migrated

return migrated

Function migrateNodes (host, oversubscription):
migrated = 0
nodes = nodesSortedByCpuCount(host)
for node in nodes do
machines = getCandidateMachines(node)
for machine in sortByLessRemainingCpus(machines) do
if lisOversubscribed(machine) then
migrated += migrateNode(node, machine)
if migrated > oversubscription then
L return migrated

return migrated

100

migrated += requestUserMigration(node, overubscription-migrated)

steady state is defined as the time range between the submission of the first task and
the submission of the last task, plus a delta. In this experiment, we set the delta as
5% of the average task duration.

5.6.9 Results

In Figures 9, 11, and 13, we present the results of the Bitbrains, Azure, and Google traces,
respectively, for each combination of the oversubscription ratio and the activation (or
deactivation) of the container migrations API. The purpose is to highlight the differences
in scheduling performance between configurations that utilize the API and those that do
not.

On the left side of the figures, we display the utilization of the physical machines within
the datacenter. This metric represents the achieved resource packing efficiency for each
experiment configuration. Higher utilization indicates better resource utilization and pack-
ing. On the right side, we present the empirical cumulative distribution function (ECDF)
of the total time for each configuration. The total time encompasses both the waiting time
and the execution time, providing an overall measure of task completion time.

Additionally, in Figures 10, 12, and 14, we provide data related to the migrations, aim-
ing to understand their impact on the ECDF results. On the left side, we depict the
cumulative number of successful migrations. This represents how many times, when facing
oversubscription, the system was able to perform enough migrations to completely allevi-
ate oversubscription. On the right side, we illustrate the cumulative penalty generated by
the migrations, which reflects the additional time required for the execution of migrated
tasks.

Bitbrains. Figure 9 illustrates the results for the Bitbrains trace. The packing graph
demonstrates that configurations utilizing the API achieve better resource utilization, with
up to a 4% higher utilization compared to configurations without the API. However, as
time progresses, all configurations converge to similar utilization levels, indicating that the
initial packing advantage diminishes over time.

The migrations graph in Figure 9 reveals that configurations utilizing the API experience
a higher number of successful migrations, approximately 170,000 (93%) more migrations
in total. However, it is important to note that these migrations come at a cost. The
cumulative penalty associated with the migrations is also higher with the API, resulting
in a total penalty difference of 41.6 hours (88%). The impact of these penalties may
overshadow the benefits of the 3% higher resource packing achieved through container
migrations, ultimately leading to limited improvements in task execution times.

Azure. Figure 10 presents the results for the Azure trace. The packing graph demon-
strates that configurations utilizing the API achieve better resource packing. The difference
in packing efficiency becomes more pronounced with higher oversubscription ratios. Specif-
ically, at a ratio of 5.0, the API yields a 15% higher utilization, while at a ratio of 4.0, the
difference is around 8%. However, at a ratio of 3.0, using the API results in worse packing
compared to not using the API, with a difference of approximately 6%.

101

0.83 _ - —
) 4%ut. =600
-2 0.801 1%ut. é:,:
< ﬁ a.
E o ~— 4001
Z 0.781 0.5%ut. g
o = 2001
5075 2
o
=
T T T T 0 T T
0 200 400 600 & & & &
Timestamp [h] ,@& Q \fzv& g\ @& _Q\
) &)
\eo \oo \GO
Ratio/Migration oD N oD
3.0/container—*— 3.0/vm
4.0/container 4.0/vm (b) Tasks Total Times P90
5.0/container 5.0/vm

(a) Packing efficiency

Figure 9: Packing efficiency (left) and tasks Total Times P90 (right) of Bitbrains trace.
Each line and bar represents a different <Oversubscription ratio>/<Migrations API>
configuration.

Certainly! Here’s the modified code to align the subfigures in the second figure at the
top:

Regarding task execution times, the API consistently yields shorter times, indicating
higher performance. The greatest differences in performance are observed at the oversub-
scription ratios of 5.0 and 4.0. Using the API with a ratio of 5.0, the 90th percentile
experiences a time reduction of 260 hours (81%), while at a ratio of 4.0, the reduction is
180 hours (13%). For a ratio of 3.0, the API results in a time reduction of around 45 hours
(13%).

In Figure 12, we observe that using the API for migrations leads to a higher number of
successful migrations. Specifically, for oversubscription ratios of 3, 4, and 5, the number
of successful migrations increases by 400 (25%), 1300 (61%), and 1000 (23%) respectively.
Additionally, there is a penalty reduction of 1.6 (25%) and 2.5 (25%) minutes for oversub-
scription ratios of 3 and 4, respectively, while an increase of 8.8 minutes is observed for an
oversubscription ratio of 5.

Google. The packing graph in Figure 13 for the Google trace shows minimal differences
among the different configurations, regardless of the oversubscription ratio and API usage.
However, when utilizing the API, shorter task execution times and higher performance are
observed. This can be attributed to the unique nature of the Google trace, where tasks
are extremely small and utilize a single CPU core. Although the packing differences may
not be noticeable due to the short task durations, significant improvements are seen in the
90th percentile total times. Notably, using the API with a ratio of 5.0 results in a 66%
reduction (4 hours) in the 90th percentile times, while ratios of 3.0 and 4.0 achieve 21% (1
hour) and 3% (8 minutes) lower times, respectively.

In Figure 14, the use of the API leads to a significant increase in successful migrations,
with approximately 35,000 more migrations compared to when the APT is not used. Addi-

102

—_

(O]

o
L

3.00 1

1.001
170k mig.

2.00 — e

5.00 1 /

Cumulative migrations (x10°)

Cumulative penalty (x10%) [ms]

1.004
0.00
0 200 400 600 0 200 400 600
Timestamp [h] Timestamp [h]
Ratio/Migration Ratio/Migration
3.0/container—*— 3.0/vm 3.0/container—*— 3.0/vm
4.0/container 4.0/vm 4.0/container 4.0/vim
5.0/container 5.0/vm 5.0/container 5.0/vm

Figure 10: Migrations cumulative amount (left) and migrations cumulative penalty (right)
of Bitbrains trace. Each line, bar, or boxplot represents a different <Oversubscription
ratio>/<Migrations API> configuration.

tionally, in this trace, no penalties are observed as the requested memory of the tasks are
small enough to avoid any penalties.

5.6.10 Discussion
Our main findings from this experiment are:

MF2.1 In all traces except for Bitbrains, the performance is improved by using the extended
API for container migrations.

MF2.2 The highest oversubscription ratio of 5.0 obtains the highest performance improve-
ment using container migrations.

MF2.3 The main benefit of migrations is greater packing, i.e., greater utilization of resources.
However, when the tasks are very small, the benefits of migrations cannot be appre-
ciated through packing.

MF2.4 It is complex to explain performance improvements through migration metrics, and it
is necessary to generate more metrics and deeper analysis to have a complete picture.

This experiment highlights the trade-off between simplicity and performance in sched-
ulers that do not offer callbacks to users. The results demonstrate that providing user-level
migrations as a programming abstraction significantly improves performance in terms of to-
tal times, except for the Bitbrains trace. The highest oversubscription ratio of 5.0 achieves
the greatest performance improvement, up to 260 hours lower total times for the 90th per-
centile. However, there are cases where using the lowest oversubscription ratio of 3.0 with
user-level migrations results in worse performance, indicating the need for further research

103

0.90 15%ut. = 113%
g =300 =
8 H S 63%
= —
S o0 = e\ £ 200 81%
. -6%ut. e
! : . . 0 . .
0 200 400 600 RN N AN
J & &
Timestamp [h] & Q\A‘\ & o & Q\&
& SN S @
Ratio/Migration %_Q\ TwQ\ QD‘Q\
3.0/container—*— 3.0/vm
4.0/container 4.0/vm (b) Tasks Total Times P90
5.0/container 5.0/vm

(a) Packing efficiency

Figure 11: Packing efficiency (left) and tasks Total Times P90 (right) of Azure trace.
Each line and bar represents a different <Oversubscription ratio>/<Migrations API>
configuration.

to understand the underlying causes.

Furthermore, in this experiment, we demonstrate that container migrations improve
performance and that offering it as a programming abstraction is necessary. The user
does not always have a second scheduling layer like a Kubernetes cluster. Moreover, the
datacenter schedulers do not have the business logic knowledge to decide which tasks to
migrate and where. Therefore, the scheduler cannot internally implement the container
migration logic without exposing programmability to the user. Our experiments simulate
these neutral cases when we deactivate the container migrations.

The use of parameter sweeps to evaluate the impact of different costs for migration
could have provided additional insights into the performance behavior of the system. By
systematically varying the migration costs, it would be possible to analyze how different
cost settings affect the scheduler’s decision-making process and overall performance. This
approach would have allowed for a more comprehensive understanding of the trade-offs in-
volved and potentially revealed alternative configurations that optimize performance under
specific cost scenarios. While not explored in this study, incorporating parameter sweeps
for migration costs could be a valuable direction for future research.

Lastly, to understand how migrations affect performance, we also show graphs on the
number of migrations and their penalties. This helps to understand how the Bitbrains
trace, despite having a lot of migrations, does not show almost any improvement in per-
formance because it also presents the highest penalties. However, it is not straightforward
to understand how the penalties and migrations interplay. This creates an opportunity
for future research to understand better how migrations affect task scheduling perfor-

mance.

104

.
~ 5.00 1k mig. z -8.8min
2 (23%) —1.001 (117%)
2 4.00 . k=)
g 1'3é‘1$‘g' % 8.001 2.5min
£ 3.001 (61%) = (25%)
& Z 6.00]
= 2.001 g ﬁ /
.E ‘GZ) 4.00 A //—/Yﬁ/(
< =
= 1.001 0.4k mig. % _—* .
S Z (25%) g 2.001 — 1.6min
~ 0.00 S — (25%)
200 400 600 200 400 600
Timestamp [h] Timestamp [h]
Ratio/Migration Ratio/Migration
3.0/container—*— 3.0/vm 3.0/container—#*— 3.0/vm
4.0/container 4.0/vm 4.0/container 4.0/vm
5.0/container 5.0/vm 5.0/container 5.0/vm

Figure 12: Migrations cumulative amount (left) and migrations cumulative penalty (right)
of Azure trace. FEach line, bar, or boxplot represents a different <Oversubscription
ratio>/<Migrations API> configuration.

5.7 Extension 3: Reducing Data Workflows execution times using meta-
data access

In the last experiment, we will extend and evaluate a scheduler to access user metadata.
Users store data in the datacenters, and later, their jobs use it. The devices where the data
is stored may suffer from network congestion or high request load, so the response time
varies over time, and there are moments when they are very high. In addition, the data
placement is also different and can be more or less far from the virtualized VMs where
the user executes the tasks and requests the data. There are scenarios where the user has
to process various data items, but they do not require any specific order. In these cases,
the user obtains data items from the scheduler in arbitrary order or solely with insights
from the data itself, such as data size. Thus, it is likely that the data retrieval order is
not optimal. If the data is spread across different storage devices, the user can request the
data from a congested storage device while other data is not congested. Therefore, if the
user has access to the metadata, she could obtain insights about where the data is stored
and, consequently, optimize the order in which the data is obtained and processed.

However, the scheduler, through its APIs, hides all these insights from the user. None
of the industrial schedulers we discussed in the previous sections offer the programming
abstraction for | access metadata| The only programming abstraction that all schedulers
provide is the API to handle the data is access to the input data. Therefore, the user can
request data stored in the datacenter, but she does not have access through metadata to
the insights about congestion or placement that allow her to optimize her jobs. Therefore,
in this experiment, we implemented an extension to schedulers that offers users metadata
access, by which they can obtain the necessary insights to optimize the data access or-

105

= = 6
2 =
§ 0.801 E 66%
o T4 9
. R
= 0.601 =9l
- £
T T T T B
0 20 40 60 0 AN N N
Timestamp [h] &\)&Q@ %Q\é\ &\@Q@ ,XQ\AQ &@9‘2} < Q\A‘Q’
9 ’ 2 » >
Ratio/Migration Q\QO Q\QO . Q\QO
3.0/container—*— 3.0/vm > > >
4.0/container 4.0/vm .
5.0/container 5.0/vm (b) Tasks Total Times P90

(a) Packing efficiency

Figure 13: Packing efficiency (left) and tasks Total Times P90 (right) of Google trace.
Each line and bar represents a different <Oversubscription ratio>/<Migrations API>
configuration.

der. In this way, we demonstrate that schedulers sacrifice significant performance for user
applications in some scenarios by not exposing the abstraction of | access metadata |.

5.7.1 Requirements

Before designing the experiment and the API extension, we identify specific functional
requirements for the experiment, and we present them below:

FR1 Enable object retrieval optimization from object storage

The main requirement of this experiment is to offer abstractions to the user to op-
timize object retrieval and obtain higher performance. In this way, when the object
storage is congested, the order of the object retrieval is recalculated to avoid conges-

tion.
FR Provide security and privacy.

By providing metadata about the data storage in the datacenter, the provider offers
information about the underlying resources and possible aggregated data about other
tenants. This has the potential to cause security breaches over. Therefore, the API
must be able to enable metadata access while not offering compromised information
about the underlying resources.

5.7.2 System model

For this experiment, we model users running jobs in a datacenter that processes data stored
in object storage within the datacenter. Each tenant runs a multi-core application (¥l in
Figure 15). The tenants have pre-stored data items in object storage within the datacenter
(E¥EEIR), and the application processes those data items. It dynamically assigns a data item
to each available CPU core. When a core finishes processing the data item, the application

106

E/ 4.004 g
£ 3.001 =
_{% 35k mig. é
£ 2.001 (350%) e
= E
s i =
2 1.00 — | i
= O
© 0.001
20 40 60
Timestamp [h]
Ratio/Migration
3.0/container—*— 3.0/vm
4.0/container 4.0/vm
5.0/container 5.0/vm

4.00 1

2.00 1

0.00 1

-2.001

|

=~

o

o
s

20 40
Timestamp [h]
Ratio/Migration
3.0/container—*— 3.0/vm
4.0/container 4.0/vm

5.0/container 5.0/vm

60

Figure 14: Migrations cumulative amount (left) and migrations cumulative penalty (right)
of Google trace. Each line, bar, or boxplot represents a different <Oversubscription

ratio>/<Migrations API> configuration.

looks for a data item that has not been processed yet and assigns it to it. When the
application assigns a data item to the CPU core, the core takes care of downloading the
item from object storage and processing it (@ and @). The datacenter has a scheduler,
the front end for object storage. So the user sends a request to the scheduler specifying
an id that represents the data item he wants to obtain, and the scheduler is in charge
of directing the request to the storage server that contains the object. The data items
that the application processes do not present precedence between the different data items.
Therefore, it can process them in any order without affecting the final result.

A1l A2

al- al- a2-

o1 02 05

az- ail-
o4 o3

Legend

A1l

User
application

|:| Object

storage
al- || Object with ID 1
o1 |/from Application 1

—> Actions

- - =-» Monitoring

Figure 15: Optimized object retrieval experiment system model.

The object storage comprises several storage servers, and each server has several CPU
cores that allow requests to be processed concurrently. Each server has several queues in
case there are more concurrent requests than available cores. The server processes the

107

queues in FIFO order. When all CPU cores are busy, user requests go to queues, and users
must wait for a CPU core to become free, and there are no requests from other tenants
ahead of it in the queue. However, the user does not have access to the metadata that
informs in which server the data items that need to be processed are stored, nor the load
of the servers.

The API offered by the scheduler to access the object storage to users can be simplified
as follows:

e get(object-id): object: the user specifies the ID of the object he wants to down-
load, and the scheduler sends the object back.

5.7.3 Model extension

In this experiment, we extend the model system presented so that the user application
queries the metadata of the objects to decide which objects to retrieve next. In this way, if
an object has a high estimated retrieval time, its processing is delayed and thus increases
the chances of reducing congestion and, consequently, the retrieval time. The scheduler
retrieves this information by monitoring the storage servers (@). In the initial model, the
user does not know if the requested object is stored on an overloaded storage server, while
other objects that it will process later may not be stored on congested servers. Compared
to the initial model, the user does not retrieve objects in arbitrary order since, through
the extension, she can obtain insights that help her get rid of the inefficiencies in object
access, which lead to increased latency, reduced throughput, and decreased overall system
performance [31, 47].

The extension is based on the designed reference architecture. The scheduler offers a
new ’accessMetadata‘ action that receives a single parameter that is the object id, which
is a object and allows to specify the object from which the metadata is
obtained using the ID. In Listing 5.7.3, we provide an example of the extension, showcasing
the syntax for metadata access:

ManageData : AccessMetadata
UserResource<type:object , id:2>
IN SchedulerResource<type:

object—storage >
WHEN Event<datetime: now>

The extended programming model offered by the scheduler is the following:

e accessMetadata(objectId): [lmetadata. The user specifies an objectld which is
a | userReosource ‘ The scheduler internally calculates the metadata of the specified
object and returns a list of metadata. The scheduler can also have the metadata
computed beforehand and update it in the background.

5.7.4 Alternatives

Prior to finalizing the implementation of the metadata access API, we explored various
alternatives to fulfill the system extension requirements. Next, we will briefly explain the

108

alternatives and argue our chosen design.

Sorter: The simplest way to optimize object retrieval is to provide a sort ([Jobject-ids) :
[Jobject-ids programming abstraction, which sorts a list of object ids according to their
estimated retrieval time. In this way, each time a CPU core is released, the user applica-
tion calls the sort method passing the remaining objects and assigning the objects with
the lowest retrieval times to the free CPU cores.

Iterator: A second alternative is to expose a iter([Jobject-id) objectIterator
action. The iter action receives a list of object ids. It returns an iterator over the list of
the corresponding objects, sorted by the expected retrieval time and in increasing order.
The iterator exposes an action next (n) that receives an integer n, and the scheduler sends
back the next n object id.

Metadata access: The third alternative is an action that allows the user to get meta-
data related to a data item, which contains the estimated retrieval time or congestion level
for a specific object id.

We decide to implement the third alternative for two main reasons. On the one hand,
it does not need to maintain a different internal state, as with the iterator, where the
scheduler needs to hold the list of remaining objects. On the other hand, the first sorter
alternative abstracts the user from how the sorting order is calculated. At the same
time, the API for exposing the metadata gives the user control over how the data item is
sorted. It is important to note that the third alternative is the most insecure since it can
inadvertently leak internal implementation details. However, we argue that the scheduler
must be responsible and capable of presenting the metadata in a way that is not subject
to a security breach. For example, to expose congestion, the scheduler could create a way
to rank different congestion levels, like a five start-system.

5.7.5 Industrial schedulers

In this section, we explain how the industrial schedulers that we identified in Section 3
and 4 would implement the abstraction that we evaluated in this experiment and if they
do not have it in their API, how they would implement it.

Kubernetes does not offer an API for the object storage service or for accessing the
metadata. However, Kubernetes is developing an API for object storage management 6.
In this API, they provide an abstraction named Bucketinfo to query the metadata. Below
we show the API that Kubernetes offers its users and how they would receive the metadata
about the expected retrieval time.

DriverGetInfoRequest (bucketID)

In this example, Kubernetes exposes a function that users can call via HTTP request
specifying the object ID (bucket Id), and Kubernetes will respond with metadata about
it. The metadata will include the expected retrieval time, calculated based on internal
congestion metrics.

https: //github.com/kubernetes/enhancements/tree/master /keps,/sig-storage,/1979-object-storage-
support

109

1

2

SLURM does not offer an API for the object storage service or an API for accessing
object storage service metadata. Therefore, just like in Kubernetes, SLURM should create
a complete API to offer object storage management. In this API, SLURM should offer
a command to query the metadata. Next, we show how SLURM could offer metadata
access.

smetadata -id 1

In this example, we create a new command smetadata for accessing metadata, and the
user specifies the object id through the —id parameter. SLURM responds to this command
with the object id metadata, including the expected retrieval time, based on internal
congestion metrics.

Spark does not offer an API to query the metadata. To do this, Spark should create
a new method or function on the objects it offers programmatically. Below we show how
Spark could implement the metadata access API to optimize object access.

from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()

meta = spark.read.metadata('object://1")
retrieval_time = meta["expected_retrieval_time"]

In this example, we create a new function spark.read.metadata that is used for accessing
metadata. In this case, we read an object with id 1 by specifying object://1. Spark returns
a dictionary containing metadata, including the expected retrieval time, accessed through
expected_ retrieval time.

Condor does not offer an API for the object storage service or an API for accessing object
storage service metadata. Therefore, like Kubernetes, Condor should create a complete
API for object storage management. In this API, Condor should offer a command to query
the metadata. Next, we show how Condor could offer metadata access.

condor_metadata -id 1

In this example, we create a new command condor_metadata for accessing metadata, and
the user specifies the object id through the —id parameter. Based on internal congestion
metrics, Condor responds to this command with the object id metadata, including the
expected retrieval time.

Airflow Airflow offers APIs to access different object storage services such as AWS S3.
It offers several functions on the object storage service, such as downloading, deleting,
or creating. However, it does not offer functions to query the metadata of the objects.
Therefore, Airflow must extend the API to offer metadata access API. Below we present
how Airflow could implement this extension.

from airflow.operators.amazon import S3MetadataObjectsOperator

110

metadata_objects = S3MetadatalbjectsOperator (

retrieval_time_1 = metadata_objects[1] ["expected_retrieval_time]

metadata_objects

Traces Metadata access Utilization
Google + IBM objects true false 80%

Table 13: An overview of all the metadata access extension experiment configurations.

task_id="get_metadata",
keys=[1, 2, 3],

In this example, a new Airflow operator (task) is created named S3MetadataObjectsOperator,

which is responsible for accessing the metadata of a set of objects. The user speci-
fies the group of objects by passing a list of ids to the keys parameter. Airflow re-
turns a dictionary containing the metadata for each of the objects. Later the user can
access the expected retrieval time by accessing the corresponding object through meta-
data_ objects[1]["expected retrieval_time"].

5.7.6 Configuration and design of the experiment

We aim to conduct experiments that prove the limitations of a scheduler that does not
provide metadata access programming abstractions. Table 13 summarizes this extension’s
configurations. In this experiment, the configurations are composed of a combination of
a single dimension: metadata access activated/deactivated. All the other dimensions are
fixed: the traces and the resource utilization of the object storage service. Below, each
dimension and the different choices are explained, in addition to the metrics collected in
the experiments.

Object storage traces and utilization The traces in this experiment combine Google
traces and IBM’s object storage requests [15]. In our model system, user applications are
data workflows; therefore, Azure and Bitbrains VM traces are not realistic or applicable.
The Google trace comprises single-core tasks, which are part of workflows, making it suit-
able for this experiment. However, in this experiment, we evaluate data workflows that
download objects from an object storage service, combining the Google object trace with
an IBM object requests trace. The method we combine is extracting the GET requests
from the IBM trace and assigning each request to a Google task so that the IBM trace
object distribution is respected and implemented on top of the Google trace.

Regarding the utilization of resources, we set it to 80%. However, this figure is based

on utilizing object storage service resources, not user tasks. The performance we expect
to get is based on more optimal use of the object storage service. We set the utilization
at 80%. However, despite having set it at 80%, due to the traces’ nature, it is impossible
to maintain it constantly because it fluctuates from a maximum of 90% to a minimum of

111

50%.

The IBM object requests trace can be found at http://iotta.snia.org/traces/key-
value.

Metrics In this experiment, we seek to improve performance through metadata access
since we expect metadata insights about objects to allow us to optimize object retrievals.
Therefore, it is necessary to obtain two types of metrics: workload time improvement
metrics and object storage internal metrics. The time metrics allow us to analyze the
performance improvement regarding the execution time of the data workflows. The object
storage service internal metrics allow us to understand if the improvements come from
optimized object requests, such as having less congestion, due to a higher balanced load
between the different object storage servers. The metrics we collect for the analysis of the
experiment are presented in Table 14.

Name Unit Description

vm.id - Unique identifier of the VM

vm.provision time Epoch (ms) The instant at which the server was enqueued
for the scheduler

vm.boot time Epoch (ms) The instant at which the server booted

vm.stop time Epoch (ms) The instant at which the server stopped

vim.timestamp Epoch (ms) The timestamp of the current VM metric entry

machine.id - Unique identifier of the physical machine of the
datacenter

machine.cpu utilization - The CPU utilization of the machine

machine.cpu count - The number of logical processor cores available
for this machine

machine.timestamp Epoch (ms) The timestamp of the current physical machine
metric entry

storage.server _id - Unique identifier of the server machine of the
object storage service

storage.cpu__count - The number of logical processor cores available
for this object storage server

storage.buffer size Bytes The number of bytes that are still to be sent/-

downloaded, it is equivalent to the pending re-
quests of object retrievals from the users

storage.idle time Long (ms) The time that the servers have been without re-
ceiving or processing user requests, that is, the
time that they have been without using CPU cy-
cles

Table 14: The metrics that are recorded for the metadata access extension evaluation.
We implement all the metrics related to the object storage service since OpenDC does

not implement the object storage service. Therefore, we implement the flow to collect and
calculate the metrics and the logic to export them to parquet files.

112

5.7.7 Implementation of a Software Prototype

In this section, we explain the prototype we develop to experiment. To experiment, we use
OpenDC, an open-source datacenter discrete event simulator developed by AtLarge, with
multiple years of development and operation. In the experiment, we extend OpenDC to
include the new capabilities to run an object storage service that exposes a metadata access
APT and a data workflow trace. Below we explain the changes we make. The original code
of the extension is available in https://github.com/aratz-lasa/opendc/tree/master
/opendc-experiments/metadata.

Object storage service To perform this experiment, the most important component
we implement is the object storage service. This service is the one that provides users
with external data storage, through which they can obtain the data during their workload
runtime. The simulation of this component is not so trivial. It is necessary to simulate the
internal servers and CPUs it uses since otherwise; it is impossible to perceive the congestion
or the different performance that the users obtain consequently. Therefore, we simulate
the object storage service and its different subcomponents in charge of processing and
limiting user requests in parallel. In addition, together with the logical implementation
of the object storage service, we also designed how the necessary metrics are generated
to analyze the performance. We generate two main metrics: the time each object storage
service server is idle and the size of the buffers. The idle time allows for analyzing the
resource utilization of the object storage service, while the size of the buffers indicates how
efficient the processing of user requests is.

Metadata access API After implementing the object storage server, we implement the
API through which the user can query metadata about the objects he has stored. In this
specific case, the user gets a numerical representation of the congestion of the server where
the object is stored. To do this, each storage server keeps an internal account of the size of
its buffers, that is, of the waiting line. And the metadata access API generates a numeric
representation depending on the size of the waiting line. The user specifies the object ID,
and the scheduler returns the associated metadata.

Data workflow trace Finally, to carry out the experiment, we design and implement
the execution of the data workflow. To simulate the data workflow, it is necessary to build
different blocks. First, we implement the code that loads the data workflow and transforms
it to its OpenDC representation, but also the logic to assign each object a different server of
the object storage service. Second, we implement the most complex part of executing the
data workload. The execution comprises three parts: the parallel execution of the workflow
tasks that represent the provisioned CPU cores, the metadata request and the consequent
download of the object from the storage service, and finally, the processing or execution
of the object. Apart from loading the workload and its execution, we also implemented
the integration with the existing OpenDC system so that the execution of the workflows
is done on top of the scheduling system and generates the metrics of its execution.

113

5.7.8 Assumptions

When performing the experiments, it is necessary to make several assumptions. Other-
wise, the complexity of the experiment becomes unmanageable. Next, we list the main
assumptions of this experiment.

e The datacenter has enough resources to provide all data workflows without interfer-

ences or waiting times.

e Users only make GET requests; consequently, no concurrent PUT requests can mod-
ify the data size or block its download.

5.7.9 Results

; 1.0
<z 7 ﬂ ~ ¢ 52h
2~ 2 40%
52 85GB 0 (40%)
S buffer size 2
& (36%) £
0- - . . .
40 60 80 100 0.0 — — —
Timestamp [h] 10 10 10
Total time [h]
~ 1.00
e
= 0.751
N
£0.50]I
o)
% 0.251 30% ut.
25 50 75 100

Timestamp [h]

Object access

metadata-aware submit order

Figure 16: Comparison of buffer sizes in the object storage service (upper left), ECDF
analysis of total execution times per workflow (upper right), and normalized resource
utilization (lower middle) between the configuration with and without the metadata access
API. This uses the Google Compute trace combined with the IBM object storage trace.

In Figure 16, we show the experiment’s results for activating and deactivating the meta-
data access API. The objective is to show the differences in scheduling performance between
the configurations that use the API and those that do not. On the upper left, we present
the internal buffer sizes of the object storage service, where the Y axis is the aggregated
buffer sizes of the storage service in Bytes. This represents the object storage service’s
waiting time and expected performance when a user requests an object download. On the

114

upper right, we show the ECDF of the execution time of the data workflows. The execution
time is the time spent from the data workflow that started executing until it is finished.
It excludes the waiting time for the provisioning of resources, because, as explained in the
previous section, we assume the datacenter does not have enough resources not to have
interferences or waiting times for provisioning. This assumption is made to reduce the
complexity of the experiment and to be able to obtain clear conclusions.

The object storage service buffer sizes graph clearly shows that the API configuration
obtains smaller buffer sizes, around 85 GB smaller buffers (36%). The difference in the size
of the buffers remains relatively constant, and there are no significant spikes. Consequently,
in the execution times ECDF, there is a parallel in the results. The API obtains shorter
times, that is, higher performance. The greatest difference in ECDF performance is at the
90th percentile. Using the API, the users obtain 52h hours (40%) lower total times.

In addition, in the lower middle, we show the normalized resource utilization of the
object storage service. The Y axis is obtained by calculating the percentage of time that
the CPU cores of the object storage service are idle without processing user requests. The
objective is to maintain the utilization at around 80%, and the graph shows how it is at a
maximum of 100% and drops to 40%. Due to the nature of the traces, we cannot obtain
regular use. However, when users use the metadata access API, the resource utilization is
30% higher, meaning the object storage has a higher efficient usage of resources.

5.7.10 Discussion
Our main findings from this experiment are:

MF3.1 The performance is improved in execution time by using the extended API for meta-
data access.

MF3.2 The main benefit of the metadata access API for the user is an optimized execution
of the data workflow, where the processing ordering of the data objects takes into
account the congestion level of the underlying infrastructure.

MF3.3 The main benefit of the metadata access API for the datacenter provider is the higher
utilization of the resources.

This experiment aims to demonstrate that schedulers may be sacrificing performance
in exchange for simplicity if they do not offer metadata access to their users. The most
important takeaway from the results of this experiment is that performance increases in ex-
ecution times using the extended API. This improvement is achieved because the metadata
provides insights about the expected retrieval times affected by the underlying congestion
of resources. This way, when users have the metadata access API, they can delay the down-
load of objects that will take longer than necessary due to congestion. Globally, when all
users get congestion insights, the storage service gets better load balancing of requests
among object storage servers. This load balancing is not optimal since each user opti-
mizes for their workload, but it is more optimal than when users are oblivious to increased
download times because of congestion.

Due to a higher load balance, the object storage service servers have smaller buffers, and
user requests are processed faster, leading to higher user performance. This load balance

115

also supposes a greater utilization of the provider’s resources since when the buffers are less
balanced and more full, other servers receive fewer requests and lower utilization. There-
fore, with a greater load balance and the same amount of user workloads, the buffers are
less full, which means that the utilization of resources is more efficient, and consequently,
the utilization is higher.

Furthermore, in this experiment, we demonstrate that using metadata access improves
performance and that it is necessary to offer it as a programming abstraction. This is
because the provider does not have the business logic knowledge to know what objects the
user needs to download the objects. Therefore, the scheduler cannot internally implement
the optimization of data workflows without exposing programmability to the user.

6 Conclusion

In this work, we undertook the challenge of designing a comprehensive reference architec-
ture for datacenter scheduler APIs, encompassing both industrial and academic schedulers.
By conducting a meticulous comparison between this architecture and five representative
industrial schedulers, we successfully identified crucial gaps and limitations in the exist-
ing implementations, particularly in the areas of data management, task migration, and
autoscaling.

To quantify the impact of these missing abstractions, we conducted rigorous performance
evaluations. The results were striking, revealing the substantial improvements that can
be achieved by incorporating the identified abstractions. Notably, the implementation
of metadata access led to an impressive 36% enhancement in resource utilization and a
remarkable 40% reduction in total execution time per workflow. Similarly, the utilization of
container migrations yielded a substantial 15% increase in utilization and a remarkable 81%
improvement in total execution time per task. Additionally, the utilization of reservations
resulted in a significant 43% reduction in waiting times.

These findings underscore the critical importance of addressing the identified gaps in dat-
acenter scheduling systems. By providing concrete evidence of the performance impact of
missing abstractions, our work highlights the tremendous value that can be added by incor-
porating these abstractions into the design and implementation of schedulers. This research
not only sheds light on the potential for improved resource utilization and more efficient
task execution but also serves as a catalyst for future advancements in the field.

The significant contributions of this work lie in the meticulous design of the reference
architecture, which serves as a comprehensive guide for the development of more robust and
feature-rich datacenter scheduler APIs. Moreover, the detailed performance evaluations
conducted across multiple dimensions provide invaluable insights into the potential benefits
and trade-offs associated with incorporating the identified abstractions. This work paves
the way for further research and development efforts aimed at refining scheduling systems
and maximizing their performance and efficiency.

The creation of the reference architecture presented one of the biggest intellectual chal-
lenges in this work. Designing a comprehensive and versatile architecture that captures
the essential components of datacenter scheduler APIs, while addressing the limitations in

116

existing systems required a deep understanding of the underlying concepts and a meticu-
lous analysis of various schedulers. It involved carefully considering and identifying the key
abstractions necessary for efficient resource management. The process involved extensive
research, critical thinking, and iterative refinement to ensure the architecture accurately
represented the requirements of real-world schedulers. But also a non-methodic approach,
relying on intuition and creativity to navigate the complex landscape of datacenter schedul-
ing systems.

Another significant intellectual effort was dedicated to designing the experiments and
conducting thorough evaluations. This involved carefully selecting the appropriate met-
rics, defining the experimental setups, and conducting performance measurements across
different traces and workloads. Designing meaningful experiments required thoughtful
consideration of the factors that influence scheduler performance and the potential im-
pact of the proposed abstractions. It involved developing a systematic approach to gather
accurate performance data, analyze the results, and draw meaningful conclusions. This
process required a combination of theoretical knowledge, experimental skills, and careful
interpretation of the results.

We are committed to promoting transparency and open science. As part of our dedi-
cation to advancing research and fostering collaboration, we have made all our data and
software artifacts publicly available. Researchers, practitioners, and interested individuals
can access these valuable resources at the following link: https://github.com/aratz-1
asa/opendc. By sharing our data and software, we aim to facilitate further exploration,
replication, and validation of our findings, as well as encourage the development of new
insights and advancements in the field of datacenter scheduling.

References

[1] Apache airflow. https://github.com/apache/airflow, 2023.
[2] Horizontal pod autoscaling, Mar 2023.
[3] Kubernetes. https://github.com/kubernetes/kubernetes, 2023.

[4] G. Andreadis, L. Versluis, F. Mastenbroek, and A. Tosup. A reference architecture
for datacenter scheduling: design, validation, and experiments. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage, and
Analysis, SC 2018, Dallas, TX, USA, November 11-16, 2018, pages 37:1-37:15. IEEE
/ ACM, 2018.

[5] R. Bhardwaj, A. Tumanov, S. Wang, R. Liaw, P. Moritz, R. Nishihara, and I. Sto-
ica. ESCHER: expressive scheduling with ephemeral resources. In A. Gavrilovska,
D. Altinbiiken, and C. Binnig, editors, Proceedings of the 13th Symposium on Cloud
Computing, SoCC 2022, San Francisco, California, November 7-11, 2022, pages 47—
62. ACM, 2022.

[6] L. F. Bittencourt, J. Diaz-Montes, R. Buyya, O. F. Rana, and M. Parashar. Mobility-
aware application scheduling in fog computing. IEEE Cloud Computing, 4(2):26-35,
2017.

117

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]
[19]

[20]

[21]

B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes. Borg, omega, and
kubernetes. Communications of the ACM, 59(5):50-57, 2016.

W. L. Chang, D. Boyd, O. Levin, et al. Nist big data interoperability framework:
Volume 6, reference architecture. 2019.

A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The data grid:
Towards an architecture for the distributed management and analysis of large scientific
datasets. Journal of network and computer applications, 23(3):187-200, 2000.

C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan, and S. Rao.
Reservation-based scheduling: If you’re late don’t blame us! In Proceedings of the
ACM Symposium on Cloud Computing, pages 1-14, 2014.

W. Dargie. Estimation of the cost of VM migration. In 23rd International Conference
on Computer Communication and Networks, ICCCN 2014, Shanghai, China, August
4-7, 2014, pages 1-8. IEEE, 2014.

C. Delimitrou and C. Kozyrakis. Paragon: Qos-aware scheduling for heterogeneous
datacenters. ACM SIGPLAN Notices, 48(4):77-88, 2013.

C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-aware cluster
management. ACM SIGPLAN Notices, 49(4):127-144, 2014.

T. Dufva and M. Dufva. Grasping the future of the digital society. Futures, 107:17-28,
2019.

O. Eytan, D. Harnik, E. Ofer, R. Friedman, and R. I. Kat. It’s time to revisit LRU
vs. FIFO. In A. Badam and V. Chidambaram, editors, 12th USENIX Workshop on
Hot Topics in Storage and File Systems, HotStorage 2020, July 13-14, 2020. USENIX
Association, 2020.

R. Feynman. Ebnf: A notation to describe syntax. Cited on, page 10, 2016.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable
virtual organizations. The International Journal of High Performance Computing
Applications, 15(3):200-222, 2001.

F. Gens. Worldwide and regional public it cloud services, 2014.

R. Grandl, A. Singhvi, R. Viswanathan, and A. Akella. Whiz:{Data-Driven} an-
alytics execution. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21), pages 407423, 2021.

C. Grimme, J. Lepping, A. Papaspyrou, P. Wieder, R. Yahyapour, A. Oleksiak,
O. Waldrich, and W. Ziegler. Towards A standards-based grid scheduling architecture.
In S. Gorlatch, P. Fragopoulou, and T. Priol, editors, Grid Computing - Achievements
and Prospects: CoreGRID Integration Workshop 2008, Hersonissos, Crete, Greece,
April 2-4, 2008, pages 147-158. Springer, 2008.

O. Hadary, L. Marshall, I. Menache, A. Pan, E. E. Greeff, D. Dion, S. Dorminey,
S. Joshi, Y. Chen, M. Russinovich, and T. Moscibroda. Protean: VM allocation ser-
vice at scale. In 14th USENIX Symposium on Operating Systems Design and Imple-

118

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

mentation, OSDI 2020, Virtual Event, November 4-6, 2020, pages 845-861. USENIX
Association, 2020.

M. Haenlein and A. Kaplan. A brief history of artificial intelligence: On the past,
present, and future of artificial intelligence. California management review, 61(4):5—
14, 2019.

J. T. Humphries, N. Natu, A. Chaugule, O. Weisse, B. Rhoden, J. Don, L. Rizzo,
O. Rombakh, P. Turner, and C. Kozyrakis. ghost: Fast & flexible user-space delegation
of linux scheduling. In R. van Renesse and N. Zeldovich, editors, SOSP ’21: ACM
SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz,
Germany, October 26-29, 2021, pages 588-604. ACM, 2021.

M. Islam, A. K. Huang, M. Battisha, M. Chiang, S. Srinivasan, C. Peters, A. Neu-
mann, and A. Abdelnur. Oozie: towards a scalable workflow management system for
hadoop. In Proceedings of the 1st ACM SIGMOD Workshop on Scalable Workflow
Execution Engines and Technologies, pages 1-10, 2012.

M. S. Jennifer. Ten actions when grid scheduling: The user as a grid scheduler.
Grid Resource Management: State of the Art and Future Trends, Norwell, MA, USA,
Kluwer Academic Publishers, pages 15-24, 2004.

F. Juarez, J. Ejarque, and R. M. Badia. Dynamic energy-aware scheduling for parallel
task-based application in cloud computing. Future Generation Computer Systems,
78:257-271, 2018.

N. Kim, J. Cho, and E. Seo. Energy-credit scheduler: an energy-aware virtual machine
scheduler for cloud systems. Future Generation Computer Systems, 32:128-137, 2014.

D. Lipari. The slurm scheduler design. In SLURM User Group Meeting, Oct, volume 9,
page 52, 2012.

F. Liu, J. Tong, J. Mao, R. Bohn, J. Messina, L.. Badger, D. Leaf, et al. Nist cloud
computing reference architecture. NIST special publication, 500(2011):1-28, 2011.

M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski. Algorithms for cost-and
deadline-constrained provisioning for scientific workflow ensembles in iaas clouds. Fu-
ture Generation Computer Systems, 48:1-18, 2015.

S. Mazumdar, D. Seybold, K. Kritikos, and Y. Verginadis. A survey on data storage
and placement methodologies for cloud-big data ecosystem. J. Big Data, 6:15, 2019.

K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: distributed, low
latency scheduling. In Proceedings of the twenty-fourth ACM symposium on operating
systems principles, pages 69-84, 2013.

P. Owen. Slurm used on the fastest of the top500 supercomputers. https://wuw.pr
web.com/releases/2012/11/prweb10149109.htm. Accessed: 2023-03-18.

K. Ranganathan and I. Foster. Decoupling computation and data scheduling in dis-
tributed data-intensive applications. In Proceedings 11th IEEE International Sympo-
stum on High Performance Distributed Computing, pages 352-358. IEEE, 2002.

119

[35] T. Rep. 2022 Leadership Vision for Infrastructure And Operations. Gartner, 2022.

[36] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage. Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In E. Al-Shaer, S. Jha,
and A. D. Keromytis, editors, Proceedings of the 2009 ACM Conference on Computer
and Communications Security, CCS 2009, Chicago, Illinois, USA, November 9-13,
2009, pages 199-212. ACM, 2009.

[37] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes. Omega: flexible,
scalable schedulers for large compute clusters. In Z. Hanzélek, H. Hartig, M. Castro,
and M. F. Kaashoek, editors, Eighth Eurosys Conference 2013, EuroSys ’13, Prague,
Czech Republic, April 14-17, 2013, pages 351-364. ACM, 2013.

[38] S. Shen, A. Tosup, A. Israel, W. Cirne, D. Raz, and D. Epema. An availability-on-
demand mechanism for datacenters. In 2015 15th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, pages 495-504. IEEE, 2015.

[39] K. Sreenu and M. Sreelatha. W-scheduler: whale optimization for task scheduling in
cloud computing. Cluster Computing, 22(1):1087-1098, 2019.

[40] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the
condor experience. Concurr. Pract. Exp., 17(2-4):323-356, 2005.

[41] H. Topcuoglu, S. Hariri, and M. Wu. Performance-effective and low-complexity task
scheduling for heterogeneous computing. I[IEEE Trans. Parallel Distributed Syst.,
13(3):260-274, 2002.

[42] A. Tumanov, J. Cipar, G. R. Ganger, and M. A. Kozuch. alsched: Algebraic schedul-
ing of mixed workloads in heterogeneous clouds. In Proceedings of the third ACM
Symposium on Cloud Computing, pages 1-7, 2012.

[43] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter, and G. R. Ganger.
Tetrisched: global rescheduling with adaptive plan-ahead in dynamic heterogeneous
clusters. In Proceedings of the Eleventh European Conference on Computer Systems,
pages 1-16, 2016.

[44] S. Venkataraman, A. Panda, G. Ananthanarayanan, M. J. Franklin, and I. Stoica.
The power of choice in data-aware cluster scheduling. In 11th { USENIX} Symposium
on Operating Systems Design and Implementation ({ OSDI} 14), pages 301-316, 2014.

[45] J. Wilkes. More Google cluster data. Google research blog, Nov. 2011. Posted at http:
//googleresearch.blogspot.com/2011/11/more-google-cluster-data.html.

[46] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster
computing with working sets. In E. M. Nahum and D. Xu, editors, 2nd USENIX
Workshop on Hot Topics in Cloud Computing, HotCloud’10, Boston, MA, USA, June
22, 2010. USENIX Association, 2010.

. Zhai, J. Tchaye-Kondi, K. Lin, L. Zhu, W. Tao, X. Du, an . Guizani. Hadoop

47] Y. Zhai, J. Tchaye-Kondi, K. Lin, L. Zhu, W. Tao, X. D d M. Guizani. Had
perfect file: A fast and memory-efficient metadata access archive file to face small files
problem in HDFS. J. Parallel Distributed Comput., 156:119-130, 2021.

120

48]

[49]

C. Zheng, B. Tovar, and D. Thain. Deploying high throughput scientific workflows on
container schedulers with makeflow and mesos. In Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017,
Madrid, Spain, May 14-17, 2017, pages 130-139. IEEE Computer Society / ACM,
2017.

Q. Zheng, K. Zheng, H. Zhang, and V. C. Leung. Delay-optimal virtualized radio
resource scheduling in software-defined vehicular networks via stochastic learning.
IEEFE Transactions on Vehicular Technology, 65(10):7857-7867, 2016.

121

